Kinectics of beta-galactosidase synthesis in Escherichia coli at 5 C

Author:

Anderson W A

Abstract

The defect in protein synthesis that is observed in Escherichia coli after transfer to low temperature was studied. For the enzyme beta-galactosidase, the elongation reactions of transcription and translation can take place slowly but normally at 5 C. The time necessary to complete the coupled synthesis of the beta-galactosidase messenger ribonucleic acid and polypeptide chain was found to be about 80 min at 5 C. From this result and from the known length of the beta-galactosidase monomer, it is possible to calculate that at 5 C one amino acid is added to the growing polypeptide chain every 4 s. The initiation of transcription of the beta-galactosidase messenger is inhibited after transfer to 5 C. This fact alone, however, cannot account for all of the phenomena observed at 5 C, because a given amount of messenger yields less enzyme at 5 C than it does at 37 C. Furthermore, in cells induced for short periods at 37 C, the capacity to synthesize beta-galactosidase after transfer to 5 C was found to accumulate linearily with the square of the time of induction. Two alternative models could account for these data. If all ribosomes that initiate translation at 37 C yield complete beta-galactosidase polypeptide chains at 5 C, then an inhibition of translation initiation after transfer to 5 C must be invoked to explain the results. If, on the other hand, a substantial portion of the ribosomes that initiate translation at 37 C do not yield complete beta-galactosidase polypeptides at 5 C, then intracistronic polarity could account for the data, and there is no need to invoke an inhibition of translation initiation at 5 C.

Publisher

American Society for Microbiology

Subject

Molecular Biology,Microbiology

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3