Abstract
Growth and division patterns of Bacillus subtilis wild-type (div IV-A1+) and minicell-producing mutant (div IV-A1) clones were studied after spore germination during microcolony development in chambers that facilitate continuous observation with a phase contrast microscope. Data obtained from 13 div IV-A1+ clones were used to derive the equation DE equals [(mum minus 17.6)/8.8], which expresses the relationship of cell divisions present in clones of various lengths. This equation was used to determine the number of divisions expected in div IV-A1 clones if the mutant clones were able to divide as often as wild-type clones. The observed number of divisions present in mutant clones was found to be only 25.27% of the number expected on the basis of this equation. Although individual div IV-A1 clones varied in the percentage of division equivalents expressed, there appeared to be no correlation between the overall clone growth rate and the number of divisions expressed. Culturing div IV-A1+ and div IV-A1 clones together in the same growth chamber revealed that there were no diffusible interactions influencing the division phenotypes of either mutant or wild-type cells. At later stages of growth, mixed microcolonies containing cells of both genotypes were formed. A length analysis of individual cells in these populations indicated that the relative division suppression of mutant compared with wild-type cells characteristic of the initial stages of clone development was maintained. It is likely, therefore, that the excessive length of minicell-producing cells (div IV-A1) is a reflection primarily of division suppression in the mutant and not simply of mislocation of division along cell length.
Publisher
American Society for Microbiology
Subject
Molecular Biology,Microbiology
Cited by
14 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献