Cytopathogenic Effect of Trichomonas vaginalis on Human Vaginal Epithelial Cells Cultured In Vitro

Author:

Gilbert R. O.1,Elia G.2,Beach D. H.3,Klaessig Suzanne4,Singh B. N.5

Affiliation:

1. Department of Clinical Sciences1 and

2. Department of Obstetrics and Gynecology,2

3. Department of Microbiology and Immunology,3 and

4. Department of Biomedical Sciences,4 College of Veterinary Medicine, Cornell University, Ithaca, New York 14853-6401, and

5. Department of Biochemistry and Molecular Biology,5 SUNY Health Science Center, Syracuse, New York 13210

Abstract

ABSTRACT In this study we established human vaginal epithelial cells (hVECs) in culture and evaluated their interaction with Trichomonas vaginalis parasites to complement previous studies using other cell types. Primary cultures of hVECs were established. Contaminating fibroblasts were separated from epithelial cells by differential trypsinization. Specific antibody staining revealed that over 92% of cells in hVEC monolayers were epithelial cells. T. vaginalis adhered to hVECs and produced severe cytotoxic effects resulting in obliteration of the monolayer within 24 h. Adherence and cytotoxicity were not observed when T. vaginalis was exposed to human vaginal fibroblasts or bovine vaginal epithelial cells. Likewise, the bovine parasite Tritrichomonas foetus had no cytotoxic effects on hVECs. We concluded that the interaction between T. vaginalis and hVECs is both cell specific (limited to epithelial cells and not vaginal fibroblasts) and species specific (limited to human vaginal cells and not bovine cells). Pretreatment of T. vaginalis with metronidazole or periodate abolished the adhesion of parasites to cell monolayers and the cytotoxic effect, suggesting involvement of carbohydrate-containing molecules in these processes. Different clinical isolates of T. vaginalis caused damage to cultured cells at different rates. Parasites separated from the vaginal cell monolayer by a permeable membrane did not produce a cytopathic effect, suggesting contact-dependent cytotoxicity.

Publisher

American Society for Microbiology

Subject

Infectious Diseases,Immunology,Microbiology,Parasitology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3