Metabolism of resorcinylic compounds by bacteria: orcinol pathway in Pseudomonas putida

Author:

Chapman P J,Ribbons D W

Abstract

Enrichment cultures yielded two strains of Pseudomonas putida capable of growth with orcinol (3,5-dihydroxytoluene) as the sole source of carbon. Experiments with cell suspensions and cell extracts indicate that orcinol is metabolized by hydroxylation of the benzene ring followed successively by ring cleavage and hydrolyses to give 2 mol of acetate and 1 mol of pyruvate per mol of orcinol as shown: orcinol leads to 2,3,5-trihydroxytoluene leads to 2,4,6-trioxoheptanoate leads to acetate + acetylpyruvate leads to acetate + pyruvate. Evidence for this pathway is based on: (i) high respiratory activities of orcinol-grown cells towards 2,3,5-trihydroxytoluene; (ii) transient accumulation of a quinone, probably 2-hydroxy-6-methyl-1,4-benzoquinone, during grouth with orcinol; (iii) formation of pyruvate and acetate from orcinol, 2,3,5-trihydroxytoluene, and acetylpyruvate catalyzed by extracts of orcinol, but not by succinate-grown cells; (iv) characterization of the product of oxidation of 3-methylcatechol (an analogue of 2,3,5-trihydroxytoluene) showing that oxygenative cleavage occurs between carbons bearing methyl and hydroxyl substituents; (v) transient appearance of a compound having spectral properties similar to those of acetylpyruvate during 2,3,5-trihydroxytoluene oxidation by extracts of orcinol-grown cells. Orcinol hydroxylase exhibits catalytic activity when resorcinol or m-cresol is substituted for orcinol; hydroxyquinol and 3-methylcatechol are substrates for the ring cleavage enzyme 2,3,5-trihydroxytoluene-1,2-oxygenase. The enzymes of this pathway are induced by growth with orcinol but not with glucose or succinate.

Publisher

American Society for Microbiology

Subject

Molecular Biology,Microbiology

Reference46 articles.

1. The metabolism of cresols by species ofPseudomonas;Bayly R. C.;Biochem. J.,1966

2. Constituents of the bark ofZanthoxylum americanum (Mill). IV. The constitution of xanthyletin;Bell J. C.;J. Chem. Soc., p.1542-1545.,1937

3. The metabolism of thymol by a Pseudomonas;Chamberlain E. M.;Biochem. J.,1968

4. Chapman P. J. 1972. An outline of reaction sequences used for the bacterial degradation of phenolic compounds p. 17-55. In Degradation of synthetic organic molecules in the biosphere. Printing and Publishing Office National Academy of Sciences Washington D. C.

5. Metabolism of resorcinylic compounds by bacteria: alternative pathways for resorcinol catabolism in Pseudomonas putida;Chapman P. J.;J. Bacteriol.,1976

Cited by 48 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3