Therapeutic Activity of an Engineered Synthetic Killer Antiidiotypic Antibody Fragment against Experimental Mucosal and Systemic Candidiasis

Author:

Polonelli Luciano1,Magliani Walter1,Conti Stefania1,Bracci Luisa2,Lozzi Luisa2,Neri Paolo2,Adriani Daniela3,De Bernardis Flavia3,Cassone Antonio3

Affiliation:

1. Sezione di Microbiologia, Dipartimento di Patologia e Medicina di Laboratorio, Università degli Studi di Parma, Parma

2. Sezione di Chimica Biologica, Dipartimento di Biologia Molecolare, Università degli Studi di Siena, Siena

3. Dipartimento Malattie Infettive, Parassitarie ed Immuno-Mediate, Istituto Superiore di Sanità, Rome, Italy

Abstract

ABSTRACT Peptides derived from the sequence of a single-chain, recombinant, antiidiotypic antibody (IdAb; KT-scFv) acting as a functional internal image of a microbicidal, wide-spectrum yeast killer toxin (KT) were synthesized and studied for their antimicrobial activity by using the KT-susceptible Candida albicans as model organism. A decapeptide containing the first three amino acids (SAS) of the light chain CDR1 was selected and optimized by alanine replacement of a single residue. This peptide exerted a strong candidacidal activity in vitro, with a 50% inhibitory concentration of 0.056 μM, and was therefore designated killer peptide (KP). Its activity was neutralized by laminarin, a β1-3 glucan molecule, but not by pustulan, a β1-6 glucan molecule. KP also competed with the binding of a KT-like monoclonal IdAb to germinating cells of the fungus. In a rat model of vaginal candidiasis, local, postchallenge administration of KP was efficacious in rapidly abating infections caused by fluconazole-susceptible or -resistant C. albicans strains. In systemic infection of BALB/c or SCID mice preinfected intravenously with a lethal fungal load, KP caused a highly significant prolongation of the median survival time, with >80% of the animals still surviving after >60 days, whereas >90% of control mice died within 3 to 5 days. KP is therefore the first engineered peptide derived from a recombinant IdAb retaining KT microbicidal activity, probably through the interaction with the β-glucan KT receptor on target microbial cells.

Publisher

American Society for Microbiology

Subject

Infectious Diseases,Immunology,Microbiology,Parasitology

Cited by 100 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3