Bactericidal/permeability-increasing protein protects vascular endothelial cells from lipopolysaccharide-induced activation and injury

Author:

Arditi M1,Zhou J1,Huang S H1,Luckett P M1,Marra M N1,Kim K S1

Affiliation:

1. Division of Infectious Diseases, Children's Hospital Los Angeles, University of Southern California School of Medicine 90027.

Abstract

Bactericidal/permeability-increasing protein (BPI), a human neutrophil granule protein, has been shown to bind lipopolysaccharide (LPS) and neutralize LPS-mediated cytokine production in adherent monocytes and the whole-blood system. In this study we investigated the ability of recombinant human BPI (rBPI) to inhibit LPS-induced vascular endothelial cell (EC) injury and activation. rBPI inhibited significantly both rough and smooth LPS-mediated injury for cultured bovine brain microvessel ECs, as measured by lactic dehydrogenase release, and blocked the LPS-induced interleukin-6 (IL-6) release from human umbilical vein ECs in a dose-dependent manner. BPI was able to inhibit LPS-mediated EC injury or activation whether it was added before or at the same time with LPS, but delaying the time of addition of rBPI resulted only in a partial inhibition. BPI also inhibited LPS-induced tumor necrosis factor alpha, IL-1 beta, and IL-6 release from human whole blood. This inhibition of tumor necrosis factor alpha, IL-1 beta, and IL-6 release from whole blood was maximal when BPI was premixed with LPS before addition to blood and was partial when BPI was added simultaneously with LPS, but no inhibition was observed when the addition of rBPI was delayed for 5 min. These findings suggest that rBPI is a potent inhibitor of LPS-mediated responses in ECs and whole blood and underscore the potential use of BPI in treatment or prevention of endotoxic shock. In contrast, the anti-lipid A monoclonal antibodies HA-1A and E5 were ineffective in inhibiting LPS-mediated EC injury and activation as well as LPS-induced cytokine release in whole blood.

Publisher

American Society for Microbiology

Subject

Infectious Diseases,Immunology,Microbiology,Parasitology

Cited by 27 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3