Mucin AgC10 from Trypanosoma cruzi Interferes with L-Selectin-Mediated Monocyte Adhesion

Author:

Alcaide Pilar1,Lim Yaw Chin2,Luscinskas Francis W.1,Fresno Manuel3

Affiliation:

1. Department of Pathology, Center for Excellence in Vascular Biology, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts 02115

2. Departments of Pathology and Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 308433, Malaysia

3. Centro de Biología Molecular, Severo Ochoa (CSIC-UAM), Universidad Autónoma de Madrid, c/Nicolás Cabrera 1, E-28049 Madrid, Spain

Abstract

ABSTRACT The protozoan parasite Trypanosoma cruzi has evolved sophisticated systems to evade the immune response. An important requirement for a productive immune response is recruitment of the appropriate immune cells from the bloodstream to the sites of infection. Here, we show that a mucin expressed and secreted by the metacyclic infective form of T. cruzi , AgC10, is able to interfere with L-selectin-mediated monocyte adhesion. Thus, incubation of U937 monocytic cells stably expressing L-selectin (U937LAM) with AgC10 strongly reduced their adhesion on P-selectin under flow, which is dependent on L-selectin. This treatment also results in a significant inhibition by AgC10 of U937LAM and human primary monocyte adhesion to activated vascular endothelium. This effect was specific for L-selectin, because vascular cell adhesion molecule 1 (VCAM-1)-mediated adhesion was not affected by AgC10 pretreatment. This effect of AgC10 is likely due to its ability to induce L-selectin shedding from the monocyte membrane, since pharmacologic blocking of this shedding prevents AgC10 activity. This is the first description of a mechanism that prevents leukocyte adhesion to the endothelium by a parasite and represents a new potential countermeasure to evade the generation of a correct immune response.

Publisher

American Society for Microbiology

Subject

Infectious Diseases,Immunology,Microbiology,Parasitology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3