Oxidative response of human neutrophils, monocytes, and alveolar macrophages induced by unopsonized surface-adherent Staphylococcus aureus

Author:

Devalon M L1,Elliott G R1,Regelmann W E1

Affiliation:

1. University of Minnesota, Department of Pediatrics, Minneapolis 55455.

Abstract

In contrast to results with bacterial suspensions, phagocytosis of unopsonized bacteria readily occurs when bacteria are adhered to glass or plastic surfaces. However, in contrast to neutrophils, alveolar macrophages produced much less DNA denaturation as measured by acridine orange metachromasia of phagocytized Staphylococcus aureus. We have studied the phagocytosis of unopsonized surface-adherent S. aureus and the subsequent production of reactive oxygen species by peripheral blood neutrophils, monocytes, and alveolar macrophages. Phagocyte-free systems were then used to show the relationship of the reactive oxygen species produced by neutrophils and alveolar macrophages and the denaturation of unopsonized S. aureus DNA with acridine orange. Peripheral blood neutrophils, monocytes, and alveolar macrophages from normal human volunteers were added to vials with adherent S. aureus without opsonin. Bacterial uptake and luminol- and lucigenin-dependent chemiluminescence were measured. Neutrophils developed much greater luminol-dependent chemiluminescence than monocytes or alveolar macrophages. Compared with neutrophils and monocytes, alveolar macrophages developed significantly greater concentrations of superoxide, as measured by lucigenin-dependent chemiluminescence and ferricytochrome c reduction. These findings suggested that products of the myeloperoxidase-hydrogen peroxide-halide pathway were generated when peripheral blood neutrophils were stimulated and that alveolar macrophages primarily produced superoxide. When these reactive oxygen species were generated in phagocyte-free systems containing S. aureus, products of the myeloperoxidase-hydrogen peroxide-halide pathway produced denaturation of S. aureus DNA, whereas superoxide did not. Thus, differences in reactive oxygen species produced during phagocytosis may be related to the different capacities of neutrophils and alveolar macrophages to denature unopsonized adherent S. aureus DNA.

Publisher

American Society for Microbiology

Subject

Infectious Diseases,Immunology,Microbiology,Parasitology

Cited by 27 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3