Affiliation:
1. Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, China
2. Cardiff School of Biosciences, Cardiff University, Museum Avenue, Cardiff CF10 3US, United Kingdom
Abstract
ABSTRACT
The production of the vegetative mosquitocidal toxin Mtx1 from
Bacillus sphaericus
was redirected to the sporulation phase by replacement of its weak, native promoter with the strong sporulation promoter of the
bin
genes. Recombinant bacilli developed toxicity during early sporulation, but this declined rapidly in later stages, indicating the proteolytic instability of the toxin. Inhibition studies indicated the action of a serine proteinase, and similar degradation was also seen with the purified
B. sphaericus
enzyme sphericase. Following the identification of the initial cleavage site involved in this degradation, mutant Mtx1 proteins were expressed in an attempt to overcome destructive cleavage while remaining capable of proteolytic activation. However, the apparently broad specificity of sphericase seems to make this impossible. The stability of a further vegetative toxin, Mtx2, was also found to be low when it was exposed to sphericase or conditioned medium. Random mutation of the receptor binding loops of the
Bacillus thuringiensis
Cry1Aa toxin did, in contrast, allow production of significant levels of spore-associated protein in the form of parasporal crystals. The exploitation of vegetative toxins may, therefore, be greatly limited by their susceptibility to proteinases produced by the host bacteria, whereas the sequestration of sporulation-associated toxins into crystals may make them more amenable to use in strain improvement.
Publisher
American Society for Microbiology
Subject
Ecology,Applied Microbiology and Biotechnology,Food Science,Biotechnology
Cited by
18 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献