Characterization of a novel chicken heat shock transcription factor, heat shock factor 3, suggests a new regulatory pathway.

Author:

Nakai A,Morimoto R I

Abstract

We have cloned three avian heat shock transcription factor (HSF) genes corresponding to a novel factor, HSF3, and the avian homologs of mammalian HSF1 and HSF2. The predicted amino acid sequence of HSF3 is approximately 40% related to the sequence of HSF1 and HSF2. The sequences for all three factors exhibit extensive identify in the DNA binding motifs and the heptad repeats of hydrophobic amino acids which are common to all eukaryotic HSFs. Despite these overall similarities, each avian HSF exhibits distinct DNA binding properties. HSF2 when expressed in vitro binds constitutively to the heat shock element promoter sequence, whereas neither HSF1 nor HSF3 expressed in vitro binds to DNA. HSF1 DNA binding is induced upon heat shock or treatment with nonionic detergents, whereas the DNA binding properties of HSF3 are not induced by these conditions in vitro. These results suggest that HSF3 activation may involve an induction pathway distinct from the traditional forms of heat shock gene induction. HSF3 DNA binding activity, however, is obtained when the carboxyl-terminal region including the distal heptad repeat is deleted, indicating the presence of negative cis-regulatory sequences. The HSF3 message, like HSF1 and HSF2 messages, is coexpressed during development and in most tissues, which suggests a general role for the regulatory pathway involving HSF3.

Publisher

American Society for Microbiology

Subject

Cell Biology,Molecular Biology

Cited by 240 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3