A V(D)J recombinase-inducible B-cell line: role of transcriptional enhancer elements in directing V(D)J recombination.

Author:

Oltz E M,Alt F W,Lin W C,Chen J,Taccioli G,Desiderio S,Rathbun G

Abstract

Rapid analysis of mechanisms that regulate V(D)J recombination has been hampered by the lack of appropriate cell systems that reproduce aspects of normal prelymphocyte physiology in which the recombinase is activated, accessible antigen receptor loci are rearranged, and rearrangement status is fixed by termination of recombinase expression. To generate such a system, we introduced heat shock-inducible V(D)J recombination-activating genes (RAG) 1 and 2 into a recombinationally inert B-cell line. Heat shock treatment of these cells rapidly induced high levels of RAG transcripts and RAG proteins that were accompanied by a parallel induction of V(D)J recombinase activity, strongly suggesting that RAG proteins have a primary role in V(D)J recombination. Within hours after induction, these cells began to rearrange chromosomally integrated V(D)J recombination substrates but only if the substrates contained an active transcriptional enhancer; substrates lacking an enhancer were not efficiently rearranged. Activities necessary to target integrated substrates for rearrangement were provided by two separate lymphoid-specific transcriptional enhancers, as well as an active nonlymphoid enhancer, unequivocally demonstrating that such elements enhance both transcription and V(D)J recombinational accessibility.

Publisher

American Society for Microbiology

Subject

Cell Biology,Molecular Biology

Cited by 77 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Access Guide to Antigen Receptor Genes;The Journal of Immunology;2017-06-19

2. The Eλ3–1 enhancer is essential for V(D)J recombination of the murine immunoglobulin lambda light chain locus;Biochemical and Biophysical Research Communications;2013-11

3. A Novel Quantitative Fluorescent Reporter Assay for RAG Targets and RAG Activity;Frontiers in Immunology;2013

4. Dynamic Regulation of Antigen Receptor Gene Assembly;Advances in Experimental Medicine and Biology;2009

5. Germline Transcription: A Key Regulator of Accessibility and Recombination;Advances in Experimental Medicine and Biology;2009

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3