Nuclear RNase MRP is required for correct processing of pre-5.8S rRNA in Saccharomyces cerevisiae.

Author:

Schmitt M E,Clayton D A

Abstract

RNase MRP is a site-specific ribonucleoprotein endoribonuclease that cleaves RNA from the mitochondrial origin of replication in a manner consistent with a role in priming leading-strand DNA synthesis. Despite the fact that the only known RNA substrate for this enzyme is complementary to mitochondrial DNA, the majority of the RNase MRP activity in a cell is found in the nucleus. The recent characterization of this activity in Saccharomyces cerevisiae and subsequent cloning of the gene coding for the RNA subunit of the yeast enzyme have enabled a genetic approach to the identification of a nuclear role for this ribonuclease. Since the gene for the RNA component of RNase MRP, NME1, is essential in yeast cells and RNase MRP in mammalian cells appears to be localized to nucleoli within the nucleus, we utilized both regulated expression and temperature-conditional mutations of NME1 to assay for a possible effect on rRNA processing. Depletion of the RNA component of the enzyme was accomplished by using the glucose-repressed GAL1 promoter. Shortly after the shift to glucose, the RNA component of the enzyme was found to be depleted severely, and rRNA processing was found to be normal at all sites except the B1 processing site. The B1 site, at the 5' end of the mature 5.8S rRNA, is actually composed of two cleavage sites 7 nucleotides apart. This cleavage normally generates two species of 5.8S rRNA at a ratio of 10:1 (small to large) in most eukaryotes. After RNase MRP depletion, yeast cells were found to have almost exclusively the larger species of 5.8S rRNA. In addition, an aberrant 309-nucleotide precursor that stretched from the A2 to E processing sites of rRNA accumulated in these cells. Temperature-conditional mutations in the RNase MRP RNA gene gave an identical phenotype.Translation in yeast cells depleted of the smaller 5.8S rRNA was found to remain robust, suggesting a possible function for two 5.8S rRNAs in the regulated translation of select messages. These results are consistent with RNase MRP playing a role in a late step of rRNA processing. The data also indicate a requirement for having the smaller form of 5.8S rRNA, and they argue for processing at the B1 position being composed of two separate cleavage events catalyzed by two different activities.

Publisher

American Society for Microbiology

Subject

Cell Biology,Molecular Biology

Cited by 252 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3