Abstract
The observed spacing between chromosomal DNA replication origins in Saccharomyces cerevisiae is at least four times shorter than should be necessary to ensure complete replication of chromosomal DNA during the S phase. To test whether all replication origins are required for normal chromosome stability, the loss rates of derivatives of chromosome III from which one or more origins had been deleted were measured. In the case of a 61-kb circular derivative of the chromosome that has two highly active origins and one origin that initiates only 10 to 20% of the time, deletion of either highly active origin increased its rate of loss two- to fourfold. Deletion of both highly active origins caused the ring chromosome to be lost in approximately 20% of cell divisions. This very high rate of loss demonstrates that there are no efficient cryptic origins on the ring chromosome that are capable of ensuring its replication in the absence of the origins that are normally used. Deletion of the same two origins from the full-length chromosome III, which contains more than six replication origins, had no effect on its rate of loss. These results suggest that the increase in the rate of loss of the small circular chromosome from which a single highly active origin was deleted was caused by the failure of the remaining highly active origin to initiate replication in a small fraction (approximately 0.003) of cell cycles.
Publisher
American Society for Microbiology
Subject
Cell Biology,Molecular Biology
Cited by
69 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献