In Vivo Pharmacodynamic Characterization of a Novel Plectasin Antibiotic, NZ2114, in a Murine Infection Model

Author:

Andes D.12,Craig W.1,Nielsen L. A.3,Kristensen H. H.3

Affiliation:

1. Departments of Medicine

2. Medical Microbiology and Immunology, University of Wisconsin, 600 Highland Ave, Room H4/572, Madison, Wisconsin 53792

3. Novozymes A/S, Krogshoejvej 36, 2880 Bagsvaerd, Denmark

Abstract

ABSTRACT NZ2114 is a novel plectasin derivative with potent activity against gram-positive bacteria, including multiply drug-resistant strains. We used the neutropenic murine thigh infection model to characterize the time course of antimicrobial activity of NZ2114 and determine which pharmacokinetic/pharmacodynamic (PK/PD) index and magnitude best correlated with efficacy. Serum drug levels following administration of three fourfold-escalating single-dose levels of NZ2114 were measured by microbiologic assay. Single-dose time-kill studies following doses of 10, 40, and 160 mg/kg of body weight demonstrated concentration-dependent killing over the dose range (0.5 to 3.7 log 10 CFU/thigh) and prolonged postantibiotic effects (3 to 15 h) against both Staphylococcus aureus and Streptococcus pneumoniae . Mice had 10 6.3 to 10 6.8 CFU/thigh of strains of S. pneumoniae or S. aureus at the start of therapy when treated for 24 h with 0.625 to 160 mg/kg/day of NZ2114 fractionated for 4-, 6-, 12-, and 24-h dosing regimens. Nonlinear regression analysis was used to determine which PK/PD index best correlated with microbiologic efficacy. Efficacies of NZ2114 were similar among the dosing intervals ( P = 0.99 to 1.0), and regression with the 24-h area under the concentration-time curve (AUC)/MIC index was strong ( R 2 , 0.90) for both S. aureus and S. pneumoniae . The maximum concentration of drug in serum/MIC index regression was also strong for S. pneumoniae ( R 2 , 0.96). Studies to identify the PD target for NZ2114 utilized eight S. pneumoniae and six S. aureus isolates and an every-6-h regimen of drug (0.156 to 160 mg/kg/day). Treatment against S. pneumoniae required approximately twofold-less drug for efficacy in relationship to the MIC than did treatment against S. aureus . The free drug 24-h AUCs/MICs necessary to produce a stasis effect were 12.3 ± 6.7 and 28.5 ± 11.1 for S. pneumoniae and S. aureus , respectively. The 24-h AUC/MIC associated with a 1-log killing endpoint was only 1.6-fold greater than that needed for stasis. Resistance to other antimicrobial classes did not impact the magnitude of the PD target required for efficacy. The PD target in this model should be considered in the design of clinical trials with this novel antibiotic.

Publisher

American Society for Microbiology

Subject

Infectious Diseases,Pharmacology (medical),Pharmacology

Cited by 71 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3