Anaerobic metabolism of immediate methane precursors in Lake Mendota

Author:

Winfrey M R,Zeikus J G

Abstract

Lake Mendota sediments and the immediate overlying water column were studied to better understand the metabolism of the methanogenic precursors H2/CO2 and acetate in nature. The pool size of acetate (3.5 microns M) was very small, and the acetate turnover time (0.22h) was very rapid. The dissolved inorganic carbon pool was shown to be large (6.4 to 8.3 mM), and the turnover time was slow (111 H.). CO2 was shown to account for 41 +/- 5.5% of the methane produced in sediment. Acetate and H2/CO2 were simultaneously converted to CH4. The addition of H2 to sediments resulted in an increase specific activity of CH4 from H(14)CO3- and a decrease in specific activity of CH4 from [2-14C]acetate. Acetate addition resulted in a decrease in specific activity of CH4 from H(14)CO3-. The metabolism of H(14)CO3- or [2-14C]acetate to 14CH4 was not inhibited by addition of acetate or H2. After greater than 99% of added [2-14C]acetate had been turned over, 42% of the label was recovered as 14CH4 20% was recovered as 14CO2 and 38% was incorporated into sediment. Inhibitor studies of [2-14C]acetate metabolism in sediments demonstrated that CHCl3 completely inhibited CH4 formation, but not CO2 production. Air and nitrate addition inhibited CH4 formation and stimulated CO2 production, whereas fluoroacetate addition totally inhibited acetate metabolism. The oxidation of [2-14C]acetate to 14CO2 was shown to decrease with time when sediment was incubated before the addition of label, suggesting depletion of low levels of an endogenous sediment electron acceptor. Acetate metabolism varied seasonally and was related to the concentration of sulfate in the lake and interstitial water. Methanogenesis occurred in the sediment and in the water immediately overlying the sediment during period of lake stratification and several centimeters below the sediment-water interface during lake turnovers. These data indicate that methanogenesis in Lake Mendota sediments was limited by "immediate" methane precursor availability (i.e., acetate and H2), by competition for these substrates by nonmethanogens, and by seasonal variations which altered sediment and water chemistry.

Publisher

American Society for Microbiology

Subject

Ecology,Applied Microbiology and Biotechnology,Food Science,Biotechnology

Reference38 articles.

1. Intensity of bacterial methane formation in ooze deposits of certain lakes;Belyaev S. S.;Microbiology,1975

2. Bryant M. P. 1976. The microbiology of anaerobic degradation and methanogenesis with special reference to sewage p. 107-117. In H. G. Schlegel and J. Barnes (ed.) Microbial energy conversion. Erich Goltze KG Gottingen.

3. The structure of anaerobic bacterial communities in the hypolimnia of several Michigan lakes;Caldwell D. F.;Can. J. Microbiol.,1975

4. Interrelations between sulfatereducing and methane-producing bacteria in bottom deposits of a fresh water lake. I. Field observations. Antonie van Leeuwenhoek J;Cappenberg T. E.;Microbiol. Serol.,1974

5. Interrelations between sulfatereducing and methane-producing bacteria in bottom deposits of a fresh water lake. II. Inhibition experiments. Antonie van Leeuwenhoek J;Cappenberg T. E.;Microbiol. Serol.,1974

Cited by 120 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3