Origin in Acinetobacter guillouiae and Dissemination of the Aminoglycoside-Modifying Enzyme Aph(3′)-VI

Author:

Yoon Eun-Jeong1,Goussard Sylvie1,Touchon Marie23,Krizova Lenka4,Cerqueira Gustavo5,Murphy Cheryl5,Lambert Thierry6,Grillot-Courvalin Catherine1,Nemec Alexandr4,Courvalin Patrice1

Affiliation:

1. Institut Pasteur, Unité des Agents Antibactériens, Paris, France

2. Institut Pasteur, Microbial Evolutionary Genomics, Paris, France

3. CNRS, UMR 3525, Paris, France

4. Laboratory of Bacterial Genetics, National Institute of Public Health, Prague, Czech Republic

5. Broad Institute of Harvard and MIT, Cambridge, Massachusetts, USA

6. EA4043, Faculté de Pharmacie, Université Paris Sud, Châtenay-Malabry, France

Abstract

ABSTRACT The amikacin resistance gene aphA6 was first detected in the nosocomial pathogen Acinetobacter baumannii and subsequently in other genera. Analysis of 133 whole-genome sequences covering the taxonomic diversity of Acinetobacter spp. detected aphA6 in the chromosome of 2 isolates of A. guillouiae , which is an environmental species, 1 of 8 A. parvus isolates, and 5 of 34 A. baumannii isolates. The gene was also present in 29 out of 36 A. guillouiae isolates screened by PCR, indicating that it is ancestral to this species. The P native promoter for aphA6 in A. guillouiae and A. parvus was replaced in A. baumannii by P aphA6 , which was generated by use of the insertion sequence IS Aba125 , which brought a −35 sequence. Study of promoter strength in Escherichia coli and A. baumannii indicated that P aphA6 was four times more potent than P native . There was a good correlation between aminoglycoside MICs and aphA6 transcription in A. guillouiae isolates that remained susceptible to amikacin. The marked topology differences of the phylogenetic trees of aphA6 and of the hosts strongly support its recent direct transfer within Acinetobacter spp. and also to evolutionarily remote bacterial genera. Concomitant expression of aphA6 must have occurred because, contrary to the donors, it can confer resistance to the new hosts. Mobilization and expression of aphA6 via composite transposons and the upstream IS-generating hybrid P aphA6 , followed by conjugation, seems the most plausible mechanism. This is in agreement with the observation that, in the recipients, aphA6 is carried by conjugative plasmids and flanked by IS that are common in Acinetobacter spp. Our data indicate that resistance genes can also be found in susceptible environmental bacteria. IMPORTANCE We speculated that the aphA6 gene for an enzyme that confers resistance to amikacin, the most active aminoglycoside for the treatment of nosocomial infections due to Acinetobacter spp., originated in this genus before disseminating to phylogenetically distant genera pathogenic for humans. Using a combination of whole-genome sequencing of a collection of Acinetobacter spp. covering the breadth of the known taxonomic diversity of the genus, gene cloning, detailed promoter analysis, study of heterologous gene expression, and comparative analysis of the phylogenetic trees of aphA6 and of the bacterial hosts, we found that aphA6 originated in Acinetobacter guillouiae , an amikacin-susceptible environmental species. The gene conferred, upon mobilization, high-level resistance to the new hosts. This work stresses that nonpathogenic bacteria can act as reservoirs of resistance determinants, and it provides an example of the use of a genomic library to study the origin and dissemination of an antibiotic resistance gene to human pathogens.

Publisher

American Society for Microbiology

Subject

Virology,Microbiology

Cited by 45 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3