Butyrate protects against MRSA pneumonia via regulating gut-lung microbiota and alveolar macrophage M2 polarization

Author:

Zhao Yan1,Sun Haoming1,Chen Yiwei1,Niu Qiang1,Dong Yiting1,Li Mei1,Yuan Ye1,Yang Xiaojun1,Sun Qingzhu1ORCID

Affiliation:

1. College of Animal Science and Technology, Northwest A&F University , Yangling, Shaanxi, China

Abstract

ABSTRACT Methicillin-resistant Staphylococcus aureus (MRSA) is a well-recognized cause of bacterial pneumonia in general. The gut microbiota and their metabolic byproducts act as important modulators of the gut-lung axis. Our investigation indicates a significant reduction in the abundance of butyrate producer unclassified_f__ Lachnospiraceae within the lung and gut microbiota of MRSA-infected mice, as well as a significant decrease in the levels of butyrate in gut and serum. Additionally, supplementary sodium butyrate (NaB) significantly reduces bacteria colonization in the lung, suppresses pro-inflammatory cytokines expression, and enhances lung tissue morphology in MRSA-treated mice. The results of high-throughput 16S rDNA sequencing demonstrate that NaB reshapes the gut and lung microbiota by drastically reducing the abundance of potential pathogenic bacteria in the gut and cell motility-related bacteria in the lung, which are induced by MRSA. Moreover, NaB treatment augments the gut and circulating butyrate levels. Mechanistically, NaB promotes signal transducer and activator of transcription 1 (STAT1) acetylation and inhibits dimer STAT1 phosphorylation by reducing the binding of histone deacetylase 3 to STAT1, thereby altering alveolar macrophage polarization toward the M2 phenotype. Collectively, our findings suggest that NaB exerts a preventative effect against MRSA-induced pneumonia by enhancing the gut-lung microbiota and promoting macrophage polarization toward an anti-inflammatory M2 phenotype. The prophylactic administration of NaB emerges as a promising strategy for combating MRSA pneumonia. IMPORTANCE Pneumonia caused by methicillin-resistant Staphylococcus aureus (MRSA) continues to carry a high burden in terms of mortality. With the roles of gut microbiota in mediating lung diseases being gradually uncovered, the details of the molecular mechanism of the “gut-lung axis” mediated by beneficial microorganisms and small-molecule metabolites have gradually attracted the attention of researchers. However, further studies are still necessary to determine the efficacy of microbial-based interventions. Our findings indicate that sodium butyrate (NaB) alleviates MRSA-induced pulmonary inflammation by improving gut-lung microbiota and promoting M2 polarization of alveolar macrophages. Therefore, the preventive administration of NaB might be explored as an effective strategy to control MRSA pneumonia.

Funder

MOST | National Key Research and Development Program of China

General Project of Shaanxi Provincial Key R&D Plan - Social Development Field

Science Fund for Distinguished Young Scholars of Shaanxi Province

Publisher

American Society for Microbiology

Subject

Virology,Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3