Human Stx2-Specific Monoclonal Antibodies Prevent Systemic Complications of Escherichia coli O157:H7 Infection

Author:

Mukherjee Jean1,Chios Kerry1,Fishwild Dianne2,Hudson Deborah2,O'Donnell Susan2,Rich Stephen M.1,Donohue-Rolfe Arthur1,Tzipori Saul1

Affiliation:

1. Tufts University School of Veterinary Medicine, North Grafton, Massachusetts

2. Medarex, San Jose, California

Abstract

ABSTRACT Hemolytic-uremic syndrome (HUS) is a serious complication predominantly associated with infection by enterohemorrhagic Escherichia coli (EHEC), such as E. coli O157:H7. EHEC can produce Shiga toxin 1 (Stx1) and/or Shiga toxin 2 (Stx2), both of which are exotoxins comprised of active (A) and binding (B) subunits. In piglets and mice, Stx can induce fatal neurological symptoms. Polyclonal Stx2 antiserum can prevent these effects in piglets infected with the Stx2-producing E. coli O157:H7 strain 86-24. Human monoclonal antibodies (HuMAbs) against Stx2 were developed as potential passive immunotherapeutic reagents for the prevention and/or treatment of HUS. Transgenic mice bearing unrearranged human immunoglobulin (Ig) heavy and κ light chain loci (HuMAb___Mouse) were immunized with formalin-inactivated Stx2. Thirty-seven stable hybridomas secreting Stx2-specific HuMAbs were isolated: 33 IgG1κ A-subunit-specific and 3 IgG1κ and 1 IgG3κ B-subunit-specific antibodies. Six IgG1κ A-subunit-specific (1G3, 2F10, 3E9, 4H9, 5A4, and 5C12) and two IgG1κ B-subunit-specific (5H8 and 6G3) HuMAbs demonstrated neutralization of >95% activity of 1 ng of Stx2 in the presence of 0.04 μg of HuMAb in vitro and significant prolongation of survival of mice given 50 μg of HuMAb intraperitoneally (i.p.) and 25 ng of Stx2 intravenously. When administered i.p. to gnotobiotic piglets 6 or 12 h after infection with E. coli O157:H7 strain 86-24, HuMAbs 2F10, 3E9, 5H8, and 5C12 prolonged survival and prevented development of fatal neurological signs and cerebral lesions. The Stx2-neutralizing ability of these HuMAbs could potentially be used clinically to passively protect against HUS development in individuals infected with Stx-producing bacteria, including E. coli O157:H7.

Publisher

American Society for Microbiology

Subject

Infectious Diseases,Immunology,Microbiology,Parasitology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3