Role of Predicted Transmembrane Domains for Type III Translocation, Pore Formation, and Signaling by the Yersinia pseudotuberculosis YopB Protein

Author:

Ryndak Michelle B.1,Chung Hachung1,London Erwin2,Bliska James B.1

Affiliation:

1. Center for Infectious Diseases and Department of Molecular Genetics and Microbiology

2. Department of Biochemistry and Cell Biology, State University of New York at Stony Brook, Stony Brook, New York

Abstract

ABSTRACT YopB is a 401-amino-acid protein that is secreted by a plasmid-encoded type III secretion system in pathogenic Yersinia species. YopB is required for Yersinia spp. to translocate across the host plasma membrane a set of secreted effector proteins that function to counteract immune signaling responses and to induce apoptosis. YopB contains two predicted transmembrane helices (residues 166 to 188 and 228 to 250) that are thought to insert into the host plasma membrane during translocation. YopB is also required for pore formation and host-cell-signaling responses to the type III machinery, and these functions of YopB may also require membrane insertion. To elucidate the importance of membrane insertion for YopB function, YopB proteins containing helix-disrupting double consecutive proline substitutions in the center of each transmembrane domain were constructed. Yersinia pseudotuberculosis strains expressing the mutant YopB proteins were used to infect macrophages or epithelial cells. Effector translocation, pore formation, and host-cell-signaling responses were studied. Introduction of helix-disrupting substitutions into the second transmembrane domain of YopB resulted in a nonfunctional protein that was not secreted by the type III machinery. Introduction of helix-disrupting substitutions into the first transmembrane domain of YopB resulted in a protein that was fully functional for secretion and for interaction with YopD, another component of the translocation machinery. However, the YopB protein with helix-disrupting substitutions in the first transmembrane domain was partially defective for translocation, pore formation, and signaling, suggesting that all three functions of YopB involve insertion into host membrane.

Publisher

American Society for Microbiology

Subject

Infectious Diseases,Immunology,Microbiology,Parasitology

Reference60 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3