Zinc Finger Protein Zbtb20 Is Essential for Postnatal Survival and Glucose Homeostasis

Author:

Sutherland Andrew P. R.12,Zhang Hai3,Zhang Ye3,Michaud Monia1,Xie Zhifang3,Patti Mary-Elizabeth4,Grusby Michael J.1,Zhang Weiping J.13

Affiliation:

1. Department of Immunology and Infectious Diseases, Harvard School of Public Health, Boston, Massachusetts

2. John Curtin School of Medical Research, Australian National University, Canberra, ACT 0200, Australia

3. Department of Pathophysiology, Second Military Medical University, 800 Xiangyin Road, Shanghai 200433, China

4. Research Division, Cellular & Molecular Physiology, Joslin Diabetes Center, and Harvard Medical School, Boston, Massachusetts

Abstract

ABSTRACT Zbtb20 is a member of the POK family of proteins, which function primarily as transcriptional repressors via interactions mediated by their conserved C 2 H 2 Krüppel type zinc finger and BTB/POZ domains. To define the function of Zbtb20 in vivo, we generated knockout mice by homologous recombination. Zbtb20 null mice display a stark phenotype characterized by postnatal growth retardation, metabolic dysfunction, and lethality. Zbtb20 knockout mice displayed abnormal glucose homeostasis, hormonal responses, and depletion of energy stores, consistent with an energetic deficit. Additionally, increased serum bilirubin and alanine aminotransferase levels were suggestive of liver dysfunction. To identify potential liver-specific Zbtb20 target genes, we performed transcript profiling studies on liver tissue from Zbtb20 knockout mice and wild-type littermate controls. These studies identified sets of genes involved in growth, metabolism, and detoxification that were differentially regulated in Zbtb20 knockout liver. Transgenic mice expressing Zbtb20 in the liver were generated and crossed onto the Zbtb20 knockout background, which resulted in no significant normalization of growth or glucose metabolism but a significant increase in life span compared to controls. These data indicate that the phenotype of Zbtb20 knockout mice results from liver-dependent and -independent defects, suggesting that Zbtb20 plays nonredundant roles in multiple organ systems.

Publisher

American Society for Microbiology

Subject

Cell Biology,Molecular Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3