Expression of the Human Cytomegalovirus UL11 Glycoprotein in Viral Infection and Evaluation of Its Effect on Virus-Specific CD8 T Cells

Author:

Gabaev Ildar1,Elbasani Endrit1,Ameres Stefanie2,Steinbrück Lars1,Stanton Richard3,Döring Marius4,Lenac Rovis Tihana5,Kalinke Ulrich4,Jonjic Stipan5,Moosmann Andreas26,Messerle Martin16

Affiliation:

1. Department of Virology, Hannover Medical School, Hannover, Germany

2. Clinical Cooperation Group Immunooncology, Helmholtz Centre Munich, Munich, Germany

3. Institute of Infection and Immunity, School of Medicine, Cardiff University, Cardiff, United Kingdom

4. Centre for Experimental and Clinical Infection Research, Twincore, Hannover, Germany

5. Department of Histology and Embryology and Center for Proteomics, Faculty of Medicine, University of Rijeka, Rijeka, Croatia

6. German Center for Infection Research (DZIF), partner sites, Hannover and Munich, Germany

Abstract

ABSTRACT The human cytomegalovirus (CMV) UL11 open reading frame (ORF) encodes a putative type I transmembrane glycoprotein which displays remarkable amino acid sequence variability among different CMV isolates, suggesting that it represents an important virulence factor. In a previous study, we have shown that UL11 can interact with the cellular receptor tyrosine phosphatase CD45, which has a central role for signal transduction in T cells, and treatment of T cells with large amounts of a soluble UL11 protein inhibited their proliferation. In order to analyze UL11 expression in CMV-infected cells, we constructed CMV recombinants whose genomes either encode tagged UL11 versions or carry a stop mutation in the UL11 ORF. Moreover, we examined whether UL11 affects the function of virus-specific cytotoxic T lymphocytes (CTLs). We found that the UL11 ORF gives rise to several proteins due to both posttranslational modification and alternative translation initiation sites. Biotin labeling of surface proteins on infected cells indicated that only highly glycosylated UL11 forms are present at the plasma membrane, whereas less glycosylated UL11 forms were found in the endoplasmic reticulum. We did not find evidence of UL11 cleavage or secretion of a soluble UL11 version. Cocultivation of CTLs recognizing different CMV epitopes with fibroblasts infected with a UL11 deletion mutant or the parental strain revealed that under the conditions applied UL11 did not influence the activation of CMV-specific CD8 T cells. For further studies, we propose to investigate the interaction of UL11 with CD45 and the functional consequences in other immune cells expressing CD45. IMPORTANCE Human cytomegalovirus (CMV) belongs to those viruses that extensively interfere with the host immune response, yet the precise function of many putative immunomodulatory CMV proteins remains elusive. Previously, we have shown that the CMV UL11 protein interacts with the leukocyte common antigen CD45, a cellular receptor tyrosine phosphatase with a central role for signal transduction in T cells. Here, we examined the proteins expressed by the UL11 gene in CMV-infected cells and found that at least one form of UL11 is present at the cell surface, enabling it to interact with CD45 on immune cells. Surprisingly, CMV-expressed UL11 did not affect the activity of virus-specific CD8 T cells. This finding warrants investigation of the impact of UL11 on CD45 functions in other leukocyte subpopulations.

Publisher

American Society for Microbiology

Subject

Virology,Insect Science,Immunology,Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3