RBP1 Family Proteins Exhibit SUMOylation-Dependent Transcriptional Repression and Induce Cell Growth Inhibition Reminiscent of Senescence

Author:

Binda Olivier1,Roy Jean-Sébastien1,Branton Philip E.123

Affiliation:

1. Department of Biochemistry

2. Department of Oncology

3. McGill Cancer Center, McGill University, McIntyre Medical Building, 3655 Promenade Sir William Osler, Montréal, Québec H3G 1Y6, Canada

Abstract

ABSTRACT The retinoblastoma binding protein 1 (RBP1) appears to be an important factor in the repression of E2F-dependent transcription by the retinoblastoma protein (pRB) family. The recent identification of the breast carcinoma associated antigen (BCAA) as an RBP1-like protein led us to investigate its biological properties and compare them to RBP1. Like RBP1, BCAA contains a carboxy-terminal R2 domain that elicits histone deacetylase (HDAC)-dependent transcriptional repression via interactions with the SAP30 subunit of the Sin3/HDAC complex. Each RBP1 family member also contains two HDAC-independent repression activities within a region termed R1, which can be subdivided into a SUMOylated moiety (R1σ) and a predicted α-helical region (R1α). R1α is embedded within the ARID region and represses basal transcription only, whereas R1σ represses both basal and activated transcription and depends on SUMOylation. Overexpression of either RBP1 or BCAA, but not the truncated BCAA MCF-7 isoform that is overexpressed in breast cancer cells, caused a profound inhibition of cell proliferation and induced expression of a senescence marker. In each case the presence of both R1 and R2 was necessary for suppression of cell growth, suggesting that both R1 and R2 transcriptional repression activities play a role in RBP1 family protein-mediated regulation of cellular proliferation.

Publisher

American Society for Microbiology

Subject

Cell Biology,Molecular Biology

Cited by 39 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3