Regulation of Sprouty Stability by Mnk1-Dependent Phosphorylation

Author:

DaSilva John12,Xu Lizhong1,Kim Hong Joo13,Miller W. Todd4,Bar-Sagi Dafna1

Affiliation:

1. Department of Molecular Genetics and Microbiology

2. Graduate Program in Genetics

3. Graduate Program in Molecular and Cellular Biology

4. Department of Physiology and Biophysics, State University of New York at Stony Brook, Stony Brook, New York 11794

Abstract

ABSTRACT Sprouty (Spry) proteins are negative feedback modulators of receptor tyrosine kinase pathways in Drosophila melanogaster and mammals. Mammalian Spry proteins have been shown to undergo tyrosine and serine phosphorylation in response to growth factor stimulation. While several studies have addressed the function of tyrosine phosphorylation of Spry, little is known about the significance of Spry serine phosphorylation. Here we identify mitogen-activated protein kinase-interacting kinase 1 (Mnk1) as the kinase that phosphorylates human Spry2 (hSpry2) on serines 112 and 121. Mutation of these serine residues to alanine or inhibition of Mnk1 activity increases the rate of ligand-induced degradation of hSpry2. Conversely, enhancement of serine phosphorylation achieved through either the inhibition of cellular phosphatases or the expression of active Mnk1 results in the stabilization of hSpry2. Previous studies have shown that growth factor stimulation induces the proteolytic degradation of hSpry2 by stimulating tyrosine phosphorylation on hSpry2, which in turn promotes c-Cbl binding and polyubiquitination. A mutant of hSpry2 that is deficient in serine phosphorylation displays enhanced tyrosine phosphorylation and c-Cbl binding, indicating that serine phosphorylation stabilizes hSpry2 by exerting an antagonistic effect on tyrosine phosphorylation. Moreover, loss of serine phosphorylation and the resulting enhanced degradation of hSpry2 impair its capacity to antagonize fibroblast growth factor-induced extracellular signal-regulated kinase activation. Our results imply that Mnk1-mediated serine phosphorylation of hSpry2 constitutes a regulatory mechanism to extend the temporal range of Spry activity.

Publisher

American Society for Microbiology

Subject

Cell Biology,Molecular Biology

Cited by 69 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3