Variation in Bacterial ATP Level and Proton Motive Force Due to Adhesion to a Solid Surface

Author:

Hong Yongsuk1,Brown Derick G.1

Affiliation:

1. Department of Civil and Environmental Engineering, Lehigh University, Bethlehem, Pennsylvania

Abstract

ABSTRACT Bacterial adhesion to natural and man-made surfaces can be beneficial or detrimental, depending on the system at hand. Of vital importance is how the process of adhesion affects the bacterial metabolic activity. If activity is enhanced, this may help the cells colonize the surface, whereas if activity is reduced, it may inhibit colonization. Here, we report a study demonstrating that adhesion of both Escherichia coli and Bacillus brevis onto a glass surface resulted in enhanced metabolic activity, assessed through ATP measurements. Specifically, ATP levels were found to increase two to five times upon adhesion compared to ATP levels in corresponding planktonic cells. To explain this effect on ATP levels, we propose the hypothesis that bacteria can take advantage of a link between cellular bioenergetics (proton motive force and ATP formation) and the physiochemical charge regulation effect, which occurs as a surface containing ionizable functional groups (e.g., the bacterial cell surface) approaches another surface. As the bacterium approaches the surface, the charge regulation effect causes the charge and pH at the cell surface to vary as a function of separation distance. With negatively charged surfaces, this results in a decrease in pH at the cell surface, which enhances the proton motive force and ATP concentration. Calculations demonstrated that a change in pH across the cell membrane of only 0.2 to 0.5 units is sufficient to achieve the observed ATP increases. Similarly, the hypothesis indicates that positively charged surfaces will decrease metabolic activity, and results from studies of positively charged surfaces support this finding.

Publisher

American Society for Microbiology

Subject

Ecology,Applied Microbiology and Biotechnology,Food Science,Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3