2,3-Dihydroxybenzoic Acid-Containing Nanofiber Wound Dressings Inhibit Biofilm Formation by Pseudomonas aeruginosa

Author:

Ahire Jayesh J.,Dicks Leon M. T.

Abstract

ABSTRACTPseudomonas aeruginosaforms biofilms in wounds, which often leads to chronic infections that are difficult to treat with antibiotics. Free iron enhances biofilm formation, delays wound healing, and may even be responsible for persistent inflammation, increased connective tissue destruction, and lipid peroxidation. Exposure ofP. aeruginosaXen 5 to the iron chelator 2,3-dihydroxybenzoic acid (DHBA), electrospun into a nanofiber blend of poly(d,l-lactide) (PDLLA) and poly(ethylene oxide) (PEO), referred to as DF, for 8 h decreased biofilm formation by approximately 75%. This was shown by a drastic decline in cell numbers, from 7.1 log10CFU/ml to 4.8 log10CFU/ml when biofilms were exposed to DF in the presence of 2.0 mM FeCl36H2O. A similar decline in cell numbers was recorded in the presence of 3.0 mM FeCl36H2O and DF. The cells were more mobile in the presence of DHBA, supporting the observation of less biofilm formation at lower iron concentrations. DHBA at MIC levels (1.5 mg/ml) inhibited the growth of strain Xen 5 for at least 24 h. Our findings indicate that DHBA electrospun into nanofibers inhibits cell growth for at least 4 h, which is equivalent to the time required for all DHBA to diffuse from DF. This is the first indication that DF can be developed into a wound dressing to treat topical infections caused byP. aeruginosa.

Publisher

American Society for Microbiology

Subject

Infectious Diseases,Pharmacology (medical),Pharmacology

Cited by 32 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3