Genomic Determinants of THAP11/ZNF143/HCFC1 Complex Recruitment to Chromatin

Author:

Vinckevicius Aurimas12ORCID,Parker J. Brandon1,Chakravarti Debabrata1234

Affiliation:

1. Division of Reproductive Science in Medicine, Department of Obstetrics and Gynecology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA

2. Driskill Graduate Program in Life Sciences, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA

3. Department of Pharmacology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA

4. Robert H. Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA

Abstract

ABSTRACT The THAP11 and ZNF143 transcription factors recognize overlapping DNA sequences and are reported to exhibit signs of both competitive and cooperative binding. HCFC1 serves as a scaffold protein, bridging interactions between transcription factors, including THAP11 and ZNF143, and transcriptional coregulators. The exact mechanism of how DNA sequences guide the recruitment of the THAP11/ZNF143/HCFC1 complex to chromatin is still controversial. In this study, we use chromosomally integrated synthetic constructs and clustered regularly interspaced short palindromic repeat (CRISPR)-Cas9-mediated approaches in intact cells to elucidate the role of the DNA sequence in the recruitment of this complex and to establish its biological relevance. We show that the ACTACA submotif, shared by both THAP11 and ZNF143, directs the recruitment of THAP11 and HCFC1 to ZNF143-occupied loci. Importantly, its position, spacing, and orientation relative to the ZNF143 core motif are critical for this action. CRISPR-Cas9-mediated alterations of the ACTACA submotif at endogenous promoters recapitulated results obtained with synthetic constructs and resulted in altered gene transcription and histone modifications at targeted promoters. Our in vivo approaches provide strong evidence for the molecular role of the ACTACA submotif in THAP11, ZNF143, and HCFC1 cooperative recruitment to chromatin and its biological role in target gene expression.

Publisher

American Society for Microbiology

Subject

Cell Biology,Molecular Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3