Antagonism between Two Mechanisms of Antifungal Drug Resistance

Author:

Anderson James B.1,Ricker Nicole1,Sirjusingh Caroline1

Affiliation:

1. Department of Biology, University of Toronto, 3359 Mississauga Road North, Mississauga, Ontario L5L 1C6, Canada

Abstract

ABSTRACT This study tested for interaction between two independently evolved mechanisms of fluconazole resistance in Saccharomyces cerevisiae . One set of strains was from a 400-generation evolution experiment, during which the concentration of fluconazole was increased from 16 to 256 μg/ml in four increments. At 100 generations, populations became fixed for resistance mutations in either of two transcriptional regulators, PDR1 or PDR3 . At 400 generations, replicate populations became fixed for another resistance mutation in UNK1 , an unmapped gene further increasing resistance. Another genotype used in this study came from a population placed initially in 128 μg/ml of fluconazole; this environment selects for resistance through loss of function at ERG3 , resulting in altered sterol metabolism. Mutant strains carrying PDR1 r or PDR3 r were crossed with the erg3 r mutant strain, and the doubly mutant, haploid offspring were identified. The double-mutant strains grew less well than the parent strains at all concentrations of fluconazole tested. In genome-wide assays of gene expression, several ABC transporter genes that were overexpressed in one parent and several ERG genes that were overexpressed in the other parent were also overexpressed in the double mutants. Of the 43 genes that were consistently overexpressed in the PDR1 r parents at generation 100, however, 31 were not consistently overexpressed in the double mutants. Of these 31 genes, 30 were also not consistently overexpressed after a further 300 generations of evolution in the PDR1 r parent populations. The two independently evolved mechanisms of fluconazole resistance are strongly antagonistic to one another.

Publisher

American Society for Microbiology

Subject

Molecular Biology,General Medicine,Microbiology

Cited by 17 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3