Leaf Age as a Risk Factor in Contamination of Lettuce with Escherichia coli O157:H7 and Salmonella enterica

Author:

Brandl M. T.1,Amundson R.2

Affiliation:

1. Produce Safety and Microbiology Research Unit, Agricultural Research Service, U.S. Department of Agriculture, Albany, California 94710

2. Division of Ecosystem Sciences, University of California, Berkeley, California 94720

Abstract

ABSTRACT Outbreaks of Escherichia coli O157:H7 infections have been linked increasingly to leafy greens, particularly to lettuce. We present here the first evidence that this enteric pathogen can multiply on the leaves of romaine lettuce plants. The increases in population size of E. coli O157:H7 in the phyllosphere of young lettuce plants ranged from 16- to 100-fold under conditions of warm temperature and the presence of free water on the leaves and varied significantly with leaf age. The population size was consistently ca. 10-fold higher on the young (inner) leaves than on the middle leaves. The growth rates of Salmonella enterica and of the natural bacterial microflora were similarly leaf age dependent. Both enteric pathogens also achieved higher population sizes on young leaves than on middle leaves harvested from mature lettuce heads, suggesting that leaf age affects preharvest as well as postharvest colonization. Elemental analysis of the exudates collected from the surfaces of leaves of different ages revealed that young-leaf exudates were 2.9 and 1.5 times richer in total nitrogen and carbon, respectively, than middle-leaf exudates. This trend mirrored the nitrogen and carbon content of the leaf tissue. Application of ammonium nitrate, but not glucose, to middle leaves enhanced the growth of E. coli O157:H7 significantly, suggesting that low nitrogen limits its growth on these leaves. Our results indicate that leaf age and nitrogen content contribute to shaping the bacterial communities of preharvest and postharvest lettuce and that young lettuce leaves may be associated with a greater risk of contamination with E. coli O157:H7.

Publisher

American Society for Microbiology

Subject

Ecology,Applied Microbiology and Biotechnology,Food Science,Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3