Sample Dilution and Bacterial Community Composition Influence Empirical Leucine-to-Carbon Conversion Factors in Surface Waters of the World's Oceans

Author:

Teira Eva1,Hernando-Morales Víctor1,Cornejo-Castillo Francisco M.2,Alonso-Sáez Laura34,Sarmento Hugo5,Valencia-Vila Joaquín6,Serrano Catalá Teresa7,Hernández-Ruiz Marta1,Varela Marta M.6,Ferrera Isabel2,Gutiérrez Morán Xosé Anxelu84,Gasol Josep M.2

Affiliation:

1. Universidade de Vigo, Vigo, Spain

2. Institut de Ciències del Mar, CSIC, Barcelona, Spain

3. AZTI, Sukarrieta, Spain

4. Instituto Español de Oceanografía, Centro Oceanográfico de Xixón, Xixón, Spain

5. Department of Hydrobiology, Federal University of São Carlos, São Carlos, São Paulo, Brazil

6. Instituto Español de Oceanografía, Centro Oceanográfico de A Coruña, A Coruña, Spain

7. Universidad de Granada, Granada, Spain

8. Red Sea Research Center, Division of Biological and Environmental Sciences and Engineering, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia

Abstract

ABSTRACT The transformation of leucine incorporation rates to prokaryotic carbon production rates requires the use of either theoretical or empirically determined conversion factors. Empirical leucine-to-carbon conversion factors (eCFs) vary widely across environments, and little is known about their potential controlling factors. We conducted 10 surface seawater manipulation experiments across the world's oceans, where the growth of the natural prokaryotic assemblages was promoted by filtration (i.e., removal of grazers [F treatment]) or filtration combined with dilution (i.e., also relieving resource competition [FD treatment]). The impact of sunlight exposure was also evaluated in the FD treatments, and we did not find a significant effect on the eCFs. The eCFs varied from 0.09 to 1.47 kg C mol Leu −1 and were significantly lower in the FD than in the F samples. Also, changes in bacterial community composition during the incubations, as assessed by automated ribosomal intergenic spacer analysis (ARISA), were more pronounced in the FD than in the F treatments, compared to unmanipulated controls. Thus, we discourage the common procedure of diluting samples (in addition to filtration) for eCF determination. The eCFs in the filtered treatment were negatively correlated with the initial chlorophyll a concentration, picocyanobacterial abundance (mostly Prochlorococcus ), and the percentage of heterotrophic prokaryotes with high nucleic acid content (%HNA). The latter two variables explained 80% of the eCF variability in the F treatment, supporting the view that both Prochlorococcus and HNA prokaryotes incorporate leucine in substantial amounts, although this results in relatively low carbon production rates in the oligotrophic ocean.

Publisher

American Society for Microbiology

Subject

Ecology,Applied Microbiology and Biotechnology,Food Science,Biotechnology

Cited by 14 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3