Discovering the Mechanism of Action of Novel Antibacterial Agents through Transcriptional Profiling of Conditional Mutants

Author:

Freiberg C.1,Fischer H. P.2,Brunner N. A.1

Affiliation:

1. Bayer HealthCare AG, Pharma Research, Wuppertal, Germany

2. Genedata, Basel, Switzerland

Abstract

ABSTRACT We present a new strategy for predicting novel antibiotic mechanisms of action based on the analysis of whole-genome microarray data. We first built up a reference compendium of Bacillus subtilis expression profiles induced by 14 different antibiotics. This data set was expanded by adding expression profiles from mutants that showed downregulation of genes coding for proven or emerging antibacterial targets. Here, we investigate conditional mutants underexpressing ileS , pheST , fabF , and accDA , each of which is essential for growth. Our proof-of-principle analyses reveal that conditional mutants can be used to mimic chemical inhibition of the corresponding gene products. Moreover, we show that a statistical data analysis combined with thorough pathway and regulon analysis can pinpoint the molecular target of uncharacterized antibiotics. We apply this approach to two novel antibiotics: a recently published phenyl-thiazolylurea derivative and the natural product moiramide B. Our results support recent findings suggesting that the phenyl-thiazolylurea derivative is a novel phenylalanyl-tRNA synthetase inhibitor. Finally, we propose a completely novel antibiotic mechanism of action for moiramide B based on inhibition of the bacterial acetyl coenzyme A carboxylase.

Publisher

American Society for Microbiology

Subject

Infectious Diseases,Pharmacology (medical),Pharmacology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3