Pharmacokinetics of the Antiviral Agent β- l -3′-Fluoro-2′,3′-Didehydro-2′,3′-Dideoxycytidine in Rhesus Monkeys

Author:

Asif Ghazia12,Hurwitz Selwyn J.12,Gumina Giuseppe3,Chu Chung K.3,McClure Harold M.4,Schinazi Raymond F.142

Affiliation:

1. Department of Pediatrics

2. Veterans Affairs Medical Center, Decatur

3. College of Pharmacy, University of Georgia, Athens, Georgia

4. Yerkes Regional Primate Research Center, Emory University, Atlanta

Abstract

ABSTRACT β- l -3′-Fluoro-2′,3′-didehydro-2′,3′-dideoxycytidine ( l -3′-Fd4C) is a potent and selective antiretroviral nucleoside with activity against lamivudine-resistant human immunodeficiency virus type 1 (HIV-1) and hepatitis B virus (HBV) in vitro. The pharmacokinetics of l -3′-Fd4C were characterized in three rhesus monkeys given single intravenous and oral doses. A two-compartment open model was fitted to the plasma and urine data. Plasma concentrations declined in a biexponential fashion with an average beta half-life of 12.45 h and central and steady-state volumes of distribution of 0.43 and 1.90 liters/kg, respectively. The average systemic and renal clearance values were 0.23 and 0.08 liters/kg, respectively, and the apparent mean terminal half-life of the oral dose was 12.5 h. The serum concentrations exceeded the 90% effective concentration value for lamivudine-resistant and wild-type HIV-1 after oral administrations. A large variation was observed in the oral bioavailability, which ranged from 15 to 31%. To determine whether the bioavailability may be improved by using a basic buffer solution, the oral dose was repeated to the same animals in a sodium bicarbonate solution. The bioavailability of l -3′-Fd4C administered with sodium bicarbonate was not significantly different from the bioavailability when the oral dose was administered in the absence of buffer ( P = 0.49), suggesting that further development of this compound may warrant other approaches, such as development of a prodrug to improve its oral absorption.

Publisher

American Society for Microbiology

Subject

Infectious Diseases,Pharmacology (medical),Pharmacology

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3