Internuclear transfer of genetic information in kar1-1/KAR1 heterokaryons in Saccharomyces cerevisiae.

Author:

Dutcher S K

Abstract

Heterokaryons of Saccharomyces cerevisiae have been constructed utilizing the kar1-1 mutation, which prevents nuclear fusion during conjugation (J. Conde and G. Fink, Proc. Natl. Acad. Sci. U.S.A. 73:3651-3655, 1976). Each heterokaryon contained two haploid nuclei that were marked on several chromosomes. They segregated haploid progeny (cytoductants), most of which have the nuclear genotype of one or the other of the heterokaryon parents, but they occasionally segregated progeny having a recombinant genotype (exceptional cytoductants). Exceptional cytoductants receive the majority of their genome from one parent (the recipient) and a minority from the other (the donor). Transfer of two markers from the donor nucleus to the recipient is rarely coincident for markers located on different chromosomes but is nearly always coincident for those markers located on the same chromosome, suggesting that whole chromosomes are transferred from the donor nucleus to the recipient. In crosses of kar1-1 X KAR1 parents, either nucleus may act as a recipient or donor with equal probability. Recipient nuclei acquired 9 of the 10 chromosomes examined, with frequencies which were inversely correlated with the size of the chromosome. When a chromosome is acquired by the recipient nucleus, it either replaces its homolog or exists in a disomic condition. Haploid progeny emanating from kar1 X KAR1 crosses are frequently inviable. I tested whether this inviability might be the result of chromosome loss by donor nuclei. Viability of progeny from kar1 X KAR1 heterokaryons was improved when the parental nuclei were diploid to an extent consistent with the hypothesis, and diploid progeny which had become monosomic were recovered from these heterokaryons. The following sequence of events accounts for chromosome transfer in kar1 X KAR1 heterokaryons. After cell fusion, each nucleus in the heterokaryon has a probability of about 0.38 of losing one or more chromosomes. A nucleus sustaining such a loss can become a donor in a chromosome transfer event. If the other nucleus does not sustain a mortal chromosome loss, it can become a recipient in a transfer event. The chance of acquiring a chromosome lost by the donor is greater for smaller chromosomes than for larger ones and is about 0.05 for the average chromosome.

Publisher

American Society for Microbiology

Subject

Cell Biology,Molecular Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3