Murine Noroviruses Comprising a Single Genogroup Exhibit Biological Diversity despite Limited Sequence Divergence

Author:

Thackray Larissa B.1,Wobus Christiane E.1,Chachu Karen A.1,Liu Bo1,Alegre Eric R.2,Henderson Kenneth S.3,Kelley Scott T.2,Virgin Herbert W.1

Affiliation:

1. Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, Missouri 63110

2. Department of Biology, San Diego State University, San Diego, California 92182

3. Research Animal Diagnostic Services, Charles River Laboratories, Wilmington, Massachusetts 01887

Abstract

ABSTRACT Viruses within the genus Norovirus of the family Caliciviridae are the major cause of acute, nonbacterial gastroenteritis worldwide. Human noroviruses are genetically diverse, with up to 57% divergence in capsid protein sequences, and comprise three genogroups. The significance of such genetic diversity is not yet understood. The discovery of murine norovirus (MNV) and its ability to productively infect cultured murine macrophages and dendritic cells has provided an opportunity to determine the functional consequences of norovirus diversity in vitro and in vivo. Therefore, we compared the full-length genomes of 21 new MNV isolates with five previously sequenced MNV genomes and demonstrated a conserved genomic organization consisting of four open reading frames (ORFs) and a previously unknown region of nucleotide conservation in ORF2. A phylogenetic analysis of all 26 MNV genomes revealed 15 distinct MNV strains, with up to 13% divergence at the nucleotide level, that comprise a single genotype and genogroup. Evidence for recombination within ORF2 in several MNV genomes was detected by multiple methods. Serological analyses comparing neutralizing antibody responses between highly divergent strains suggested that the MNV genogroup comprises a single serotype. Within this single genogroup, MNV strains exhibited considerable biological diversity in their ability to grow in culture and to infect and/or persist in wild-type mice. The isolation and characterization of multiple MNV strains illustrate how genetic analysis may underestimate the biological diversity of noroviruses and provide a molecular map for future studies of MNV biology.

Publisher

American Society for Microbiology

Subject

Virology,Insect Science,Immunology,Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3