Affiliation:
1. Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts, 02115
Abstract
ABSTRACT
We analyzed the relationship between histone acetylation and transcriptional regulation at 40
Saccharomyces cerevisiae
promoters that respond to specific activators and repressors. In accord with the general correlation between histone acetylation and transcriptional activity, Gcn4 and the general stress activators (Msn2 and Msn4) cause increased acetylation of histones H3 and H4. Surprisingly, Gal4-dependent activation is associated with a dramatic decrease in histone H4 acetylation, whereas acetylation of histone H3 is unaffected. A specific decrease in H4 acetylation is also observed, to a lesser extent, at promoters activated by Hap4, Adr1, Met4, and Ace1. Activation by heat shock factor has multiple effects; H4 acetylation increases at some promoters, whereas other promoters show an apparent decrease in H3 and H4 acetylation that probably reflects nucleosome loss or gross alteration of chromatin structure. Repression by targeted recruitment of the Sin3-Rpd3 histone deacetylase is associated with decreased H3 and H4 acetylation, whereas repression by Cyc8-Tup1 is associated with decreased H3 acetylation but variable effects on H4 acetylation; this suggests that Cyc8-Tup1 uses multiple mechanisms to reduce histone acetylation at promoters. Thus, individual activators confer distinct patterns of histone acetylation on target promoters, and transcriptional activation is not necessarily associated with increased acetylation. We speculate that the activator-specific decrease in histone H4 acetylation is due to blocking the access or function of an H4-specific histone acetylase such as Esa1.
Publisher
American Society for Microbiology
Subject
Cell Biology,Molecular Biology
Cited by
178 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献