Survival of Enterococcus faecalis in Mouse Peritoneal Macrophages

Author:

Gentry-Weeks Claudia R.1,Karkhoff-Schweizer RoxAnn1,Pikis Andreas23,Estay Monica1,Keith Jerry M.2

Affiliation:

1. Department of Microbiology, Colorado State University, Fort Collins, Colorado1;

2. Vaccine and Therapeutic Development Section, Oral Infection and Immunity Branch, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, Maryland2; and

3. Department of Infectious Diseases, Children’s National Medical Center, Washington, D.C.3

Abstract

ABSTRACT Enterococcus faecalis was tested for the ability to persist in mouse peritoneal macrophages in two separate studies. In the first study, the intracellular survival of serum-passaged E. faecalis 418 and two isogenic mutants [cytolytic strain FA2-2(pAM714) and non-cytolytic strain FA2-2(pAM771)] was compared with that of Escherichia coli DH5α by infecting BALB/c mice intraperitoneally and then monitoring the survival of the bacteria within lavaged peritoneal macrophages over a 72-h period. All E. faecalis isolates were serum passaged to enhance the production of cytolysin. E. faecalis 418, FA2-2(pAM714), and FA2-2(pAM771) survived at a significantly higher level ( P = 0.0001) than did E. coli DH5α at 24, 48, and 72 h. Internalized E. faecalis 418, FA2-2(pAM714), and FA2-2(pAM771) decreased 10-, 55-, and 31-fold, respectively, over the 72-h infection period, while internalized E. coli DH5α decreased 20,542-fold. The difference in the rate of survival of E. faecalis strains and E. coli DH5α was most prominent between 6 and 48 h postinfection ( P = 0.0001); however, no significant difference in killing was observed between 48 and 72 h postinfection. In the second study, additional E. faecalis strains from clinical sources, including DS16C2, MGH-2, OG1X, and the cytolytic strain FA2-2(pAM714), were compared with the nonpathogenic gram-positive bacterium, Lactococcus lactis K1, for the ability to survive in mouse peritoneal macrophages. In these experiments, the E. faecalis strains and L. lactis K1 were grown in brain heart infusion (BHI) broth to ensure that there were equal quantities of injected bacteria. E. faecalis FA2-2(pAM714), DS16C2, MGH-2, and OG1X survived significantly better ( P < 0.0001) than did L. lactis K1 at each time point. L. lactis K1 was rapidly destroyed by the macrophages, and by 24 h postinfection, viable L. lactis could not be recovered. E. faecalis FA2-2(pAM714), DS16C2, MGH-2, and OG1X declined at an equivalent rate over the 72-h infection period, and there was no significant difference in survival or rate of decline among the strains. E. faecalis FA2-2(pAM714), MGH-2, DS16C2, and OG1X exhibited an overall decrease of 25-, 55-, 186-, and 129-fold respectively, between 6 and 72 h postinfection. The overall reduction by 1.3 to 2.27 log units is slightly higher than that seen for serum-passaged E. faecalis strains and may be attributable to the higher level of uptake of serum-passaged E. faecalis than of E. faecalis grown in BHI broth. Electron microscopy of infected macrophages revealed that E. faecalis 418 was present within an intact phagocytic vacuole at 6 h postinfection but that by 24 h the infected macrophages were disorganized, the vacuolar membrane was degraded, and the bacterial cells had entered the cytoplasm. Macrophage destruction occurred by 48 h, and the bacteria were released. In conclusion, the results of these experiments indicate that E. faecalis can persist for an extended period in mouse peritoneal macrophages.

Publisher

American Society for Microbiology

Subject

Infectious Diseases,Immunology,Microbiology,Parasitology

Reference53 articles.

1. Growth rate paradox of Salmonella typhimurium within host macrophages

2. Baldwin C. L. Winter A. J. Macrophages and Brucella Macrophage-pathogen interactions. Swilling B. S. Eisenstein T. K. 1994 363 380 Marcel Dekker Inc. New York N.Y

3. Stimulation of monokine production by lipoteichoic acids

4. Properties of proteinase from Streptococcus faecalis var. liquefaciens;Bleiwess A. S.;J. Bacteriol.,1964

5. Isolation of Salmonella mutants defective for intracellular survival;Bowe F.;Methods Enzymol.,1994

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3