Preservation of Serratia marcescens by High-Vacuum Lyophilization

Author:

Dewald Robert R.1

Affiliation:

1. Physical Sciences Division, U.S. Army Biological Laboratories, Fort Detrick, Frederick, Maryland

Abstract

Water-washed Serratia marcescens (ATCC strain 14041) cells were lyophilized in an all-glass system capable of evacuation to pressures of less than 5 × 10 -6 torr. Lyophilization at the lowest pressures resulted in 50 to 65% survival for unstabilized washed organisms compared with 10 to 20% when the cells were lyophilized at pressures of about 2.5 × 10 -2 torr. At the latter pressures, 45 to 65% survival was obtained when NaCl or Naylor-Smith stabilizer was added to the cell suspensions before lyophilization. However, the stabilizers failed to increase significantly the levels of survival compared with water suspension when cells were lyophilized at pressures less than 10 -5 torr. The high survival rates obtained by the high-vacuum technique may be attributed to the reduction of traces of molecular oxygen which has been reported to be destructive of the dried bacteria. Survival of unstabilized dried S. marcescens after 1-day storage increased markedly with decreasing sealing pressure. Under the highest vacuum attained, survival of the dried bacteria was not impaired by storage for up to 1 month at Dry Ice temperatures; at higher temperatures, viability losses occurred. Exposure of the dried unstabilized bacteria to dry air resulted in rapid viability loss. The inactivation could be stopped almost immediately by evacuation to pressures of less than 10 -5 torr, but the evacuation failed to reverse the viability losses that occurred during exposure.

Publisher

American Society for Microbiology

Subject

General Pharmacology, Toxicology and Pharmaceutics,General Immunology and Microbiology,General Biochemistry, Genetics and Molecular Biology,General Medicine

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3