Activity of Human Immunodeficiency Virus Type 1 Protease Inhibitors against the Initial Autocleavage in Gag-Pol Polyprotein Processing

Author:

Davis David A.1,Soule Erin E.1,Davidoff Katharine S.1,Daniels Sarah I.1,Naiman Nicole E.1,Yarchoan Robert1

Affiliation:

1. HIV and AIDS Malignancy Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, Maryland, USA

Abstract

ABSTRACT Inhibitors of HIV protease have proven to be important drugs in combination anti-HIV therapy. These inhibitors were designed to target mature protease and prevent viral particle maturation by blocking Gag and Gag-Pol processing by mature protease. Currently there are few data assessing the ability of these protease inhibitors to block the initial step in autoproteolytic processing of Gag-Pol. This unique step involves the dimerization of two Gag-Pol polyproteins and autocleavage of the Gag-Pol polyprotein by the embedded dimeric protease. We developed a plasmid encoding a modified form of Gag-Pol that can undergo autoprocessing only at the initial cleavage site between p2 and nucleocapsid. Using an in vitro transcription/translation system, we assessed the ability of six different approved protease inhibitors (darunavir, indinavir, nelfinavir, ritonavir, saquinavir, and tipranavir) to block this initial autocleavage step. Of these inhibitors, darunavir and saquinavir were the most effective. Darunavir and saquinavir were also the most effective at blocking the initial autoprocessing of full-length Gag-Pol in HIV-1-infected T cells. Thus, we have identified at least two HIV-1 protease inhibitors that have activity against the primary autocatalytic step of the embedded HIV-1 protease in Gag-Pol at concentrations that may be attained in HIV-1-infected patients. Due to unique aspects of the initial processing step, it may be possible to develop inhibitors with greater potency against this step, thus halting viral maturation at the earliest stages. The transcription/translation assay could be used to develop more potent inhibitors of this essential first step in viral maturation.

Publisher

American Society for Microbiology

Subject

Infectious Diseases,Pharmacology (medical),Pharmacology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3