Regulation of cephamycin C synthesis, aspartokinase, dihydrodipicolinic acid synthetase, and homoserine dehydrogenase by aspartic acid family amino acids in Streptomyces clavuligerus

Author:

Mendelovitz S,Aharonowitz Y

Abstract

The effect of the cephalosporin precursors and amino acids of the aspartic acid family on antibiotic production by Streptomyces clavuligerus was investigated DL-meso-Diaminopimelate and L-lysine each stimulated specific antibiotic production by 75%. A fourfold increase in specific production was obtained by simultaneous addition of the two compounds. The stimulation could be further increased by adding valine to the two effectors. In the streptomycetes the alpha-aminoadipyl side chain of the cephalosporin antibiotics is derived from lysine. Streptomycetes, like other bacteria, are expected to produce lysine from aspartic acid; therefore, the feedback control mechanisms operating in the aspartic acid family pathway of S. clavuligerus, which may affect the flow of carbon to alpha-aminoadipic acid, were investigated. Threonine inhibited antibiotic production by 41% when added to minimal medium at a concentration of 10 mM. Simultaneous addition of 10 mM lysine completely reversed this inhibition. The aspartokinase of S. clavuligerus was found to be subject to concerted feedback inhibition by threonine and lysine. Threonine may act to limit the supply of lysine available for cephamycin C biosynthesis via this concerted mechanism. Single or simultaneous addition of any other amino acid of the aspartate family in the in vitro assay did not inhibit aspartokinase activity. Activity was stimulated by lysine. Aspartokinase biosynthesis was partially repressed by methionine or isoleucine at concentrations higher than 10 mM. Methionine, but not isoleucine, inhibited cephamycin C synthesis by 27% when added to minimal medium at a concentration of 10 mM. Dihydrodipicolinate synthetase, the first specific enzyme of the lysine branch, was not inhibited by lysine but was partially inhibited by high concentrations of 2,6-diaminopimelate and alpha-aminoadipate; it was slightly repressed by diaminopimelic acid. Homoserine dehydrogenase activity was inhibited by threonine and partially repressed by isoleucine. It appears that S. clavuligerus aspartokinase is a key step in the control of carbon flow toward alpha-aminoadipic acid.

Publisher

American Society for Microbiology

Subject

Infectious Diseases,Pharmacology (medical),Pharmacology

Reference38 articles.

1. Influence of inorganic phosphate and organic buffers on cephalosporin production by Streptomyces clavuligerus;Aharonowltz Y.;Arch. Microbiol.,1977

2. Aspartic 3-semialdehyde dehydrogenase and aspartic ,-semialdehyde;Black S.;J. Biol. Chem.,1955

3. Biosynthesis of dipicolinic acid in Bacillus subtilis;Chasin L. A.;Biochem. Biophys. Res. Commun.,1967

4. A chemically defined medium for cephalosporin C production by Paecilomyces persicinus. Antonie van Leewenhock J;D'Amato R. F.;Microbiol. Serol.,1976

5. Control of enzyme activity by concerted feedback inhibition;Datta P.;Proc. Natl. Acad. Sci. U.S.A.,1964

Cited by 38 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3