Defects in Innate Immunity Predispose C57BL/6J- Lepr db / Lepr db Mice to Infection by Staphylococcus aureus

Author:

Park Sunny1,Rich Jeremy1,Hanses Frank1,Lee Jean C.1

Affiliation:

1. Channing Laboratory, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts

Abstract

ABSTRACT Foot and ankle infections are the most common cause of hospitalization among diabetic patients, and Staphylococcus aureus is a major pathogen implicated in these infections. Patients with insulin-resistant (type 2) diabetes are more susceptible to bacterial infections than nondiabetic subjects, but the pathogenesis of these infections is poorly understood. C57BL/6J- Lepr db / Lepr db (hereafter, db/db ) mice develop type 2 diabetes due to a recessive, autosomal mutation in the leptin receptor. We established a S. aureus hind paw infection in diabetic db/db and nondiabetic Lepr +/+ (+/+) mice to investigate host factors that predispose diabetic mice to infection. Nondiabetic +/+ mice resolved the S. aureus hind paw infection within 10 days, whereas db/db mice with persistent hyperglycemia developed a chronic infection associated with a high bacterial burden. Diabetic db/db mice showed a more robust neutrophil infiltration to the infection site and higher levels of chemokines in the infected tissue than +/+ mice. Blood from +/+ mice killed S. aureus in vitro, whereas db/db blood was defective in bacterial killing. Compared with peripheral blood neutrophils from +/+ mice, db/db neutrophils demonstrated a diminished respiratory burst when stimulated with S. aureus . However, bone marrow-derived neutrophils from +/+ and db/db mice showed comparable phagocytosis and bactericidal activity. Our results indicate that diabetic db/db mice are more susceptible to staphylococcal infection than their nondiabetic littermates and that persistent hyperglycemia modulates innate immunity in the diabetic host.

Publisher

American Society for Microbiology

Subject

Infectious Diseases,Immunology,Microbiology,Parasitology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3