Affiliation:
1. Department of Biology, Georgetown University, Washington, DC, USA
2. Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, Nebraska, USA
Abstract
ABSTRACT
In
Staphylococcus aureus
, the global transcriptional regulator CodY modulates the expression of hundreds of genes in response to the availability of GTP and the branched-chain amino acids isoleucine, leucine, and valine (ILV). CodY DNA-binding activity is high when GTP and ILV are abundant. When GTP and ILV are limited, CodY's affinity for DNA drops, altering expression of CodY-regulated targets. In this work, we investigated the impact of guanine nucleotides (GNs) on
S. aureus
physiology and CodY activity by constructing a
guaA
null mutant (Δ
guaA
strain).
De novo
biosynthesis of guanine monophosphate is abolished due to the
guaA
mutation; thus, the mutant cells require exogenous guanosine for growth. We also found that CodY activity was reduced when we knocked out
guaA
, activating the Agr two-component system and increasing secreted protease activity. Notably, in a rich, complex medium, we detected an increase in alternative sigma factor B activity in the Δ
guaA
mutant, which results in a 5-fold increase in production of the antioxidant pigment staphyloxanthin. Under biologically relevant flow conditions, Δ
guaA
cells failed to form robust biofilms when limited for guanine or guanosine. Transcriptome sequencing (RNA-Seq) analysis of the
S. aureus
transcriptome during growth in guanosine-limited chemostats revealed substantial CodY-dependent and -independent alterations of gene expression profiles. Importantly, these changes increase production of proteases and δ-toxin, suggesting that
S. aureus
exhibits a more invasive lifestyle when limited for guanosine. Further, gene products upregulated under GN limitation, including those necessary for lipoic acid biosynthesis and sugar transport, may prove to be useful drug targets for treating Gram-positive infections.
IMPORTANCE
Staphylococcus aureus
infections impose a serious economic burden on health care facilities and patients because of the emergence of strains resistant to last-line antibiotics. Understanding the physiological processes governing fitness and virulence of
S. aureus
in response to environmental cues is critical for developing efficient diagnostics and treatments.
De novo
purine biosynthesis is essential for both fitness and virulence in
S. aureus
since inhibiting production cripples
S. aureus
's ability to cause infection. Here, we corroborate these findings and show that blocking guanine nucleotide synthesis severely affects
S. aureus
fitness by altering metabolic and virulence gene expression. Characterizing pathways and gene products upregulated in response to guanine limitation can aid in the development of novel adjuvant strategies to combat
S. aureus
infections.
Funder
HHS | NIH | National Institute of Allergy and Infectious Diseases
HHS | NIH | National Institute of General Medical Sciences
Publisher
American Society for Microbiology
Subject
Molecular Biology,Microbiology
Cited by
10 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献