Disparate Independent Genetic Events Disrupt the Secondary Metabolism Gene perA in Certain Symbiotic Epichloë Species

Author:

Berry Daniel1,Takach Johanna E.2,Schardl Christopher L.3,Charlton Nikki D.2,Scott Barry1,Young Carolyn A.2

Affiliation:

1. Institute of Fundamental Sciences, Massey University, Palmerston North, New Zealand

2. The Samuel Roberts Noble Foundation, Ardmore, Oklahoma, USA

3. Department of Plant Pathology, University of Kentucky, Lexington, Kentucky, USA

Abstract

ABSTRACT Peramine is an insect-feeding deterrent produced by Epichloë species in symbiotic association with C 3 grasses. The perA gene responsible for peramine synthesis encodes a two-module nonribosomal peptide synthetase. Alleles of perA are found in most Epichloë species; however, peramine is not produced by many perA -containing Epichloë isolates. The genetic basis of these peramine-negative chemotypes is often unknown. Using PCR and DNA sequencing, we analyzed the perA genes from 72 Epichloë isolates and identified causative mutations of perA null alleles. We found nonfunctional perA -ΔR* alleles, which contain a transposon-associated deletion of the perA region encoding the C-terminal reductase domain, are widespread within the Epichloë genus and represent a prevalent mutation found in nonhybrid species. Disparate phylogenies of adjacent A2 and T2 domains indicated that the deletion of the reductase domain (R*) likely occurred once and early in the evolution of the genus, and subsequently there have been several recombinations between those domains. A number of novel point, deletion, and insertion mutations responsible for abolishing peramine production in full-length perA alleles were also identified. The regions encoding the first and second adenylation domains (A1 and A2, respectively) were common sites for such mutations. Using this information, a method was developed to predict peramine chemotypes by combining PCR product size polymorphism analysis with sequencing of the perA adenylation domains.

Publisher

American Society for Microbiology

Subject

Ecology,Applied Microbiology and Biotechnology,Food Science,Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3