Author:
Waditee-Sirisattha Rungaroon,Kageyama Hakuto,Sopun Warangkana,Tanaka Yoshito,Takabe Teruhiro
Abstract
ABSTRACTMycosporine-like amino acids (MAAs) are valuable molecules that are the basis for important photoprotective constituents. Here we report molecular analysis of mycosporine-like amino acid biosynthetic genes from the halotolerant cyanobacteriumAphanothece halophytica, which can survive at high salinity and alkaline pH. This extremophile was found to have a unique MAA core (4-deoxygadusol)-synthesizing gene separated from three other genes.In vivoanalysis showed accumulation of the mycosporine-2-glycine but not shinorine or mycosporine-glycine. Mycosporine-2-glycine accumulation was stimulated more under the stress condition of high salinity than UV-B radiation. TheAphanotheceMAA biosynthetic genes also manifested a strong transcript level response to salt stress. Furthermore, the transformedEscherichia coliandSynechococcusstrains expressing four putativeAphanotheceMAA genes under the control of a native promoter were found to be capable of synthesizing mycosporine-2-glycine. The accumulation level of mycosporine-2-glycine was again higher under the high-salinity condition. In the transformedE. colicells, its level was approximately 85.2 ± 0.7 μmol/g (dry weight). Successful production of a large amount of mycosporine in these cells provides a new opportunity in the search for an alternative natural sunscreen compound source.
Publisher
American Society for Microbiology
Subject
Ecology,Applied Microbiology and Biotechnology,Food Science,Biotechnology
Cited by
74 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献