Discovery of a Prefusion Respiratory Syncytial Virus F-Specific Monoclonal Antibody That Provides Greater In Vivo Protection than the Murine Precursor of Palivizumab

Author:

Zhao Min123,Zheng Zi-Zheng1,Chen Man3,Modjarrad Kayvon4,Zhang Wei2,Zhan Lu-Ting1,Cao Jian-Li2,Sun Yong-Peng1,McLellan Jason S.5,Graham Barney S.3,Xia Ning-Shao12

Affiliation:

1. State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen, Fujian, People's Republic of China

2. National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Life Sciences, Xiamen University, Xiamen, Fujian, People's Republic of China

3. Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA

4. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, Maryland, USA

5. Department of Biochemistry and Cell Biology, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, USA

Abstract

ABSTRACT Palivizumab, a humanized murine monoclonal antibody that recognizes antigenic site II on both the prefusion (pre-F) and postfusion (post-F) conformations of the respiratory syncytial virus (RSV) F glycoprotein, is the only prophylactic agent approved for use for the treatment of RSV infection. However, its relatively low neutralizing potency and high cost have limited its use to a restricted population of infants at high risk of severe disease. Previously, we isolated a high-potency neutralizing antibody, 5C4, that specifically recognizes antigenic site Ø at the apex of the pre-F protein trimer. We compared in vitro and in vivo the potency and protective efficacy of 5C4 and the murine precursor of palivizumab, antibody 1129. Both antibodies were synthesized on identical murine backbones as either an IgG1 or IgG2a subclass and evaluated for binding to multiple F protein conformations, in vitro inhibition of RSV infection and propagation, and protective efficacy in mice. Although 1129 and 5C4 had similar pre-F protein binding affinities, the 5C4 neutralizing activity was nearly 50-fold greater than that of 1129 in vitro . In BALB/c mice, 5C4 reduced the peak titers of RSV 1,000-fold more than 1129 did in both the upper and lower respiratory tracts. These data indicate that antibodies specific for antigenic site Ø are more efficacious at preventing RSV infection than antibodies specific for antigenic site II. Our data also suggest that site Ø-specific antibodies may be useful for the prevention or treatment of RSV infection and support the use of the pre-F protein as a vaccine antigen. IMPORTANCE There is no vaccine yet available to prevent RSV infection. The use of the licensed antibody palivizumab, which recognizes site II on both the pre-F and post-F proteins, is restricted to prophylaxis in neonates at high risk of severe RSV disease. Recommendations for using passive immunization in the general population or for therapy in immunocompromised persons with persistent infection is limited because of cost, determined from the high doses needed to compensate for its relatively low neutralizing potency. Prior efforts to improve the in vitro potency of site II-specific antibodies did not translate to significant in vivo dose sparing. We isolated a pre-F protein-specific, high-potency neutralizing antibody (5C4) that recognizes antigenic site Ø and compared its efficacy to that of the murine precursor of palivizumab (antibody 1129) matched for isotype and pre-F protein binding affinities. Our findings demonstrate that epitope specificity is an important determinant of antibody neutralizing potency, and defining the mechanisms of neutralization has the potential to identify improved products for the prevention and treatment of RSV infection.

Funder

HHS | NIH | National Institute of Allergy and Infectious Diseases

National Natural Science Foundation of China

Publisher

American Society for Microbiology

Subject

Virology,Insect Science,Immunology,Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3