The ubc-2 gene of Caenorhabditis elegans encodes a ubiquitin-conjugating enzyme involved in selective protein degradation.

Author:

Zhen M,Heinlein R,Jones D,Jentsch S,Candido E P

Abstract

The ubiquitin-protein conjugation system is involved in a variety of eukaryotic cell functions, including the degradation of abnormal and short-lived proteins, chromatin structure, cell cycle progression, and DNA repair. The ubiquitination of target proteins is catalyzed by a ubiquitin-activating enzyme (E1) and ubiquitin-conjugating enzymes (E2s) and in some cases also requires auxiliary substrate recognition proteins (E3s). Multiple E2s have been found, and these likely possess specificity for different classes of target proteins. Here we report the cloning and characterization of a gene (ubc-2) encoding a ubiquitin-conjugating enzyme which is involved in the selective degradation of abnormal and short-lived proteins in the nematode Caenorhabditis elegans. The nematode ubc-2 gene encodes a 16.7-kDa protein with striking amino acid sequence similarity to Saccharomyces cerevisiae UBC4 and UBC5 and Drosophila UbcD1. When driven by the UBC4 promoter, ubc-2 can functionally substitute for UBC4 in yeast cells; it rescues the slow-growth phenotype of ubc4 ubc5 mutants at normal temperature and restores their ability to grow at elevated temperatures. Western blots (immunoblots) of ubc4 ubc5 yeast cells transformed with ubc-2 reveal a protein of the expected size, which cross-reacts with anti-Drosophila UbcD1 antibody. C. elegans ubc-2 is constitutively expressed at all life cycle stages and, unlike yeast UBC4 and UBC5, is not induced by heat shock. Both trans and cis splicing are involved in the maturation of the ubc-2 transcript. These data suggest that yeast UBC4 and UBC5, Drosophila UbcD1, and C. elegans ubc-2 define a highly conserved gene family which plays fundamental roles in all eukaryotic cells.

Publisher

American Society for Microbiology

Subject

Cell Biology,Molecular Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3