Nocardia farcinica Activates Human Dendritic Cells and Induces Secretion of Interleukin-23 (IL-23) Rather than IL-12p70

Author:

Eisenblätter Martin,Buchal Ariane,Gayum Hermine,Jasny Edith,Renner Viveros Pablo,Ulrichs Timo,Schneider Thomas,Schumann Ralf R.,Zweigner Janine,Ignatius Ralf

Abstract

ABSTRACTStudying the interaction of dendritic cells (DCs) with bacteria controlled by T-cell-mediated immune responses may reveal novel adjuvants for the induction of cellular immunity. Murine studies and the observation that nocardias infect predominantly immunosuppressed patients have suggested that these bacteria may possess an adjuvant potential. Moreover, adjuvants on the basis of the nocardial cell wall have been applied in clinical studies. Since the handling of adjuvants by DCs may determine the type of immune responses induced by a vaccine, the present study aimed at investigating the interaction of immature human monocyte-derived DCs with live or inactivatedNocardia farcinicain vitroand determining the cellular phenotypic changes as well as alterations in characteristic functions, such as phagocytosis, induction of T-cell proliferation, and cytokine secretion. Human DCs ingestedN. farcinicaand eradicated the bacterium intracellularly. DCs exposed to inactivatedN. farcinicawere activated, i.e., they developed a mature phenotype, downregulated their phagocytic capacity, and stimulated allogeneic T cells in mixed leukocyte reactions. Soluble factors were not involved in this process. To elucidate the potential adjuvant effect ofN. farcinicaon the induction of T-cell-mediated immune responses, we characterized the cytokines produced by nocardia-exposed DCs and detected substantial amounts of tumor necrosis factor alpha (TNF-α) and interleukin-12 p40 (IL-12p40). However, nocardia-treated DCs secreted only small amounts of IL-12p70, which were significantly smaller than the amounts of IL-23. Thus,N. farcinicaactivates DCs, but adjuvants based on this bacterium may have only a limited capacity to induce Th1 immune responses.

Publisher

American Society for Microbiology

Subject

Infectious Diseases,Immunology,Microbiology,Parasitology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3