Diagnosis of Herpes Simplex Virus Infections in the Clinical Laboratory by LightCycler PCR

Author:

Espy Mark J.1,Uhl James R.1,Mitchell P. Shawn1,Thorvilson Jill N.1,Svien Kathleen A.1,Wold Arlo D.1,Smith Thomas F.1

Affiliation:

1. Division of Clinical Microbiology, Mayo Clinic, Rochester, Minnesota 55905

Abstract

ABSTRACT Herpes simplex virus (HSV) causes several clinical manifestations in both normal and immunocompromised hosts; this agent is the most frequently detected virus in diagnostic laboratories. Recovery of the virus in cell culture is considered the “gold standard” for detection of this virus from sources other than cerebrospinal fluid. LightCycler is a newly developed, commercially available system designed to rapidly perform PCR, with real-time detection of PCR products by a fluorescence resonance energy transfer assay. We compared the detection of HSV for 200 specimens (number of genital specimens, 160; number of dermal specimens, 38; number of ocular specimens, 2) by shell vial cell cultures (MRC-5) and by LightCycler PCR. Of a total of 88 (44%) HSV strains detected, 69 (78%) were detected by both shell vial cell cultures and LightCycler PCR (DNA polymerase target). A total of 19 (22%) specimens were detected exclusively by LightCycler PCR. No specimens were positive by the shell vial assay only. All 19 discrepant samples had HSV DNA detected by an independent PCR directed to the thymidine kinase gene of the virus. The melting curve analysis feature of the LightCycler instrument identified identical genotype results for HSV type 1 (HSV-1) and HSV-2 from 84 of 88 (96%) positive samples. Specimens can be extracted, target HSV DNA can be amplified, and HSV PCR products can be identified by genotype within 2 h after receipt of specimen into the laboratory. The increased level of accurate identification (all 88 positive samples) compared with that of shell vial cell culture (69 of 88 samples identified as positive) and the agreement of LightCycler PCR results with all shell vial positive results indicate the potential for routine implementation of this technology for laboratory diagnosis of HSV infections.

Publisher

American Society for Microbiology

Subject

Microbiology (medical)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3