Fluorescent In Situ Hybridization Allows Rapid Identification of Microorganisms in Blood Cultures

Author:

Kempf Volkhard A. J.1,Trebesius Karlheinz1,Autenrieth Ingo B.1

Affiliation:

1. Max von Pettenkofer-Institut für Hygiene und Medizinische Mikrobiologie, Ludwig Maximilians Universität München, D-80336 Munich, Germany

Abstract

ABSTRACT Using fluorescent in situ hybridization (FISH) with rRNA-targeted fluorescently labelled oligonucleotide probes, pathogens were rapidly detected and identified in positive blood culture bottles without cultivation and biotyping. In this study, 115 blood cultures with a positive growth index as determined by a continuous-reading automated blood culture system were examined by both conventional laboratory methods and FISH. For this purpose, oligonucleotide probes that allowed identification of approximately 95% of those pathogens typically associated with bacteremia were produced. The sensitivity and specificity of these probes were 100%. From all 115 blood cultures, microorganisms were grown after 1 day and identification to the family, genus, or species level was achieved after 1 to 3 days while 111 samples (96.5%) were similarly identified by FISH within 2.5 h. Staphylococci were identified in 62 of 62 samples, streptococci and enterococci were identified in 19 of 20 samples, gram-negative rods were identified in 28 of 30 samples, and fungi were identified in two of two samples. Thus, FISH is an appropriate method for identification of pathogens grown in blood cultures from septicemic patients.

Publisher

American Society for Microbiology

Subject

Microbiology (medical)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3