Clinical Impact of Laboratory Implementation of Verigene BC-GN Microarray-Based Assay for Detection of Gram-Negative Bacteria in Positive Blood Cultures

Author:

Walker Tamar1,Dumadag Sandrea2,Lee Christine Jiyoun2,Lee Seung Heon1,Bender Jeffrey M.3,Cupo Abbott Jennifer2,She Rosemary C.1

Affiliation:

1. Department of Pathology, Keck School of Medicine of the University of Southern California, Los Angeles, California, USA

2. University of Southern California School of Pharmacy, Los Angeles, California, USA

3. Department of Pediatrics, Keck School of Medicine of the University of Southern California, Los Angeles, California, USA

Abstract

ABSTRACT Gram-negative bacteremia is highly fatal, and hospitalizations due to sepsis have been increasing worldwide. Molecular tests that supplement Gram stain results from positive blood cultures provide specific organism information to potentially guide therapy, but more clinical data on their real-world impact are still needed. We retrospectively reviewed cases of Gram-negative bacteremia in hospitalized patients over a 6-month period before ( n = 98) and over a 6-month period after ( n = 97) the implementation of a microarray-based early identification and resistance marker detection system (Verigene BC-GN; Nanosphere) while antimicrobial stewardship practices remained constant. Patient demographics, time to organism identification, time to effective antimicrobial therapy, and other key clinical parameters were compared. The two groups did not differ statistically with regard to comorbid conditions, sources of bacteremia, or numbers of intensive care unit (ICU) admissions, active use of immunosuppressive therapy, neutropenia, or bacteremia due to multidrug-resistant organisms. The BC-GN panel yielded an identification in 87% of Gram-negative cultures and was accurate in 95/97 (98%) of the cases compared to results using conventional culture. Organism identifications were achieved more quickly post-microarray implementation (mean, 10.9 h versus 37.9 h; P < 0.001). Length of ICU stay, 30-day mortality, and mortality associated with multidrug-resistant organisms were significantly lower in the postintervention group ( P < 0.05). More rapid implementation of effective therapy was statistically significant for postintervention cases of extended-spectrum beta-lactamase-producing organisms ( P = 0.049) but not overall ( P = 0.12). The Verigene BC-GN assay is a valuable addition for the early identification of Gram-negative organisms that cause bloodstream infections and can significantly impact patient care, particularly when resistance markers are detected.

Publisher

American Society for Microbiology

Subject

Microbiology (medical)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3