Structural requirements for enhancement of T-cell responsiveness by the lymphocyte-specific tyrosine protein kinase p56lck.

Author:

Caron L,Abraham N,Pawson T,Veillette A

Abstract

To understand the mechanism(s) by which p56lck participates in T-cell receptor (TCR) signalling, we have examined the effects of mutations in known regulatory domains of p56lck on the ability of F505 p56lck to enhance the responsiveness of an antigen-specific murine T-cell hybridoma. A mutation of the amino-terminal site of myristylation (glycine 2), which prevents stable association of p56lck with the plasma membrane, completely abolished the ability of F505 p56lck to enhance TCR-induced tyrosine protein phosphorylation. Alteration of the major site of in vitro autophosphorylation, tyrosine 394, to phenylalanine diminished the enhancement of TCR-induced tyrosine protein phosphorylation by F505 p56lck. Such a finding is consistent with the previous demonstration that this site is required for full activation of p56lck by mutation of tyrosine 505. Strikingly, deletion of the noncatalytic Src homology domain 2, but not of the Src homology domain 3, markedly reduced the improvement of TCR-induced tyrosine protein phosphorylation by F505 Lck. Additional studies revealed that all the mutations tested, including deletion of the Src homology 3 region, abrogated the enhancement of antigen-triggered interleukin-2 production by F505 p56lck, thus implying more stringent requirements for augmentation of antigen responsiveness by F505 Lck. Finally, it was also observed that expression of F505 p56lck greatly increased TCR-induced tyrosine phosphorylation of phospholipase C-gamma 1, raising the possibility that phospholipase C-gamma 1 may be a substrate for p56lck in T lymphocytes. Our results indicate that p56lck regulates T-cell antigen receptor signalling through a complex process requiring multiple distinct structural domains of the protein.

Publisher

American Society for Microbiology

Subject

Cell Biology,Molecular Biology

Cited by 90 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3