Rapid induction in regenerating liver of RL/IF-1 (an I kappa B that inhibits NF-kappa B, RelB-p50, and c-Rel-p50) and PHF, a novel kappa B site-binding complex.

Author:

Tewari M,Dobrzanski P,Mohn K L,Cressman D E,Hsu J C,Bravo R,Taub R

Abstract

The liver is one of the few adult tissues that has the capacity to regenerate following hepatectomy or toxic damage. In examining the early growth response during hepatic regeneration, we found that a highly induced immediate-early gene in regenerating liver encodes RL/IF-1 (regenerating liver inhibitory factor) and is the rat homolog of human MAD-3 and probably of chicken pp40. RL/IF-1 has I kappa B activity of broad specificity in that it inhibits the binding of p50-p65 NF-kappa B, c-Rel-p50, and RelB-p50, but not p50 homodimeric NF-kappa B, to kappa B sites. Like RL/IF-1, several members of the NF-kappa B and rel family of transcription factors are immediate-early genes in regenerating liver and mitogen-treated cells. We examined changes in kappa B site binding activity during liver regeneration and discovered a rapidly induced novel kappa B site-binding complex designated PHF [posthepatectomy factor(s)]. PHF is induced over 1,000-fold within minutes posthepatectomy in a protein synthesis-independent manner, with peak activity at 30 min, and is not induced by sham operation. PHF is distinct from p50-p65 NF-kappa B, which is present only in the inactive form in liver posthepatectomy. Although early PHF complexes do not interact strongly with anti-p50 antibodies, PHF complexes present later (3 to 5 h) posthepatectomy react strongly, suggesting that they contain a p50 NF-kappa B subunit. Unlike p50-p65 NF-kappa B, c-Rel-p50, and RelB-p50 complexes, PHF binding to kappa B sites is not inhibited by RL/IF-1. One role of RL/IF-1 in liver regeneration may be to inhibit p50-p65 NF-kappa B activity present in hepatic cells, allowing for the preferential binding of PHF to kappa B sites. Because PHF is induced immediately posthepatectomy in the absence of de novo protein synthesis, PHF could have a role in the regulation of liver-specific immediate-early genes in regenerating liver.

Publisher

American Society for Microbiology

Subject

Cell Biology,Molecular Biology

Cited by 153 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3